Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments

Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments Single-molecule experiments on DNA unzipping are analyzed on the basis of the mobility of nucleic bases in complemen- tary pairs. Two possible scenarios of DNA double-helix unzipping are proposed and studied, using the atom–atom potential function method. According to the first scenario, the base pairs transit into a ‘preopened’ metastable state and then fully open along the ‘stretch’ pathway. In this case, the DNA unzipping takes place slowly and as an equilibrium process, with the opening energies being similar to the energies obtained in thermodynamic experiments on DNA melting. The second scenario is characterized by higher opening forces. In this case, the DNA base pairs open directly along the ‘stretch’ pathway. ⋅ ⋅ It follows from our calculations that, in this scenario, the enthalpy difference between the A T and G C base pairs is much higher than in the first case. The features of the first unzipping scenario show that it can play a key role during the process of DNA genetic information transfer in vivo. It follows from our study that a peculiarity of the second scenario is that it can be used for the development of faster methods for reading genetic information in vitro. Keywords DNA base pairs · http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Biophysics Journal Springer Journals

Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments

Loading next page...
 
/lp/springer_journal/possible-scenarios-of-dna-double-helix-unzipping-process-in-single-jqDTjIWktk
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by European Biophysical Societies' Association
Subject
Life Sciences; Biochemistry, general; Biological and Medical Physics, Biophysics; Cell Biology; Neurobiology; Membrane Biology; Nanotechnology
ISSN
0175-7571
eISSN
1432-1017
D.O.I.
10.1007/s00249-018-1313-3
Publisher site
See Article on Publisher Site

Abstract

Single-molecule experiments on DNA unzipping are analyzed on the basis of the mobility of nucleic bases in complemen- tary pairs. Two possible scenarios of DNA double-helix unzipping are proposed and studied, using the atom–atom potential function method. According to the first scenario, the base pairs transit into a ‘preopened’ metastable state and then fully open along the ‘stretch’ pathway. In this case, the DNA unzipping takes place slowly and as an equilibrium process, with the opening energies being similar to the energies obtained in thermodynamic experiments on DNA melting. The second scenario is characterized by higher opening forces. In this case, the DNA base pairs open directly along the ‘stretch’ pathway. ⋅ ⋅ It follows from our calculations that, in this scenario, the enthalpy difference between the A T and G C base pairs is much higher than in the first case. The features of the first unzipping scenario show that it can play a key role during the process of DNA genetic information transfer in vivo. It follows from our study that a peculiarity of the second scenario is that it can be used for the development of faster methods for reading genetic information in vitro. Keywords DNA base pairs ·

Journal

European Biophysics JournalSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off