Possible association between phages, Hoc protein, and the immune system

Possible association between phages, Hoc protein, and the immune system Mammals have become “an environment” for enterobacterial phage life cycles. Therefore it could be expected that bacteriophages adapt to them. This adaptation must comprise bacteriophage proteins. Gp Hoc seems to have significance neither for phage particle structure nor for phage antibacterial activity. It is evidently not necessary for the “typical” antibacterial actions of bacteriophages. But the rules of evolution make it improbable that gp Hoc really has no function, and non-essential genes of T4-type phages are probably important for phages’ adaptation to their particular lifestyle. More interesting is the eukaryotic origin of gp Hoc: a resemblance to immunoglobulin-like proteins that reflects their evolutionary relation. Substantial differences in biological activity between T4 and a mutant that lacks gp Hoc were observed in a mammalian system. Hoc protein seems to be one of the molecules predicted to interact with mammalian organisms and/or modulate these interactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Possible association between phages, Hoc protein, and the immune system

Loading next page...
 
/lp/springer_journal/possible-association-between-phages-hoc-protein-and-the-immune-system-jrZfj0eu0C
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Infectious Diseases; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-005-0641-7
Publisher site
See Article on Publisher Site

Abstract

Mammals have become “an environment” for enterobacterial phage life cycles. Therefore it could be expected that bacteriophages adapt to them. This adaptation must comprise bacteriophage proteins. Gp Hoc seems to have significance neither for phage particle structure nor for phage antibacterial activity. It is evidently not necessary for the “typical” antibacterial actions of bacteriophages. But the rules of evolution make it improbable that gp Hoc really has no function, and non-essential genes of T4-type phages are probably important for phages’ adaptation to their particular lifestyle. More interesting is the eukaryotic origin of gp Hoc: a resemblance to immunoglobulin-like proteins that reflects their evolutionary relation. Substantial differences in biological activity between T4 and a mutant that lacks gp Hoc were observed in a mammalian system. Hoc protein seems to be one of the molecules predicted to interact with mammalian organisms and/or modulate these interactions.

Journal

Archives of VirologySpringer Journals

Published: Feb 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off