Positive semigroups and algebraic Riccati equations in Banach spaces

Positive semigroups and algebraic Riccati equations in Banach spaces We generalize Wonham’s theorem on solvability of algebraic operator Riccati equations to Banach spaces, namely there is a unique stabilizing solution to $$A^*P+PA-PBB^*P+C^*C=0$$ A ∗ P + P A - P B B ∗ P + C ∗ C = 0 when (A, B) is exponentially stabilizable and (C, A) is exponentially detectable. The proof is based on a new approach that treats the linear part of the equation as the generator of a positive semigroup on the space of symmetric operators from a Banach space to its dual, and the quadratic part as an order concave map. A direct analog of global Newton’s iteration for concave functions is then used to approximate the solution, the approximations converge in the strong operator topology, and the convergence is monotone. The linearized equations are the well-known Lyapunov equations of the form $$A^*P+PA=-Q$$ A ∗ P + P A = - Q , and semigroup stability criterion in terms of them is also generalized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Positive semigroups and algebraic Riccati equations in Banach spaces

Loading next page...
 
/lp/springer_journal/positive-semigroups-and-algebraic-riccati-equations-in-banach-spaces-0TZnV5uMCo
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Basel
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-015-0371-3
Publisher site
See Article on Publisher Site

Abstract

We generalize Wonham’s theorem on solvability of algebraic operator Riccati equations to Banach spaces, namely there is a unique stabilizing solution to $$A^*P+PA-PBB^*P+C^*C=0$$ A ∗ P + P A - P B B ∗ P + C ∗ C = 0 when (A, B) is exponentially stabilizable and (C, A) is exponentially detectable. The proof is based on a new approach that treats the linear part of the equation as the generator of a positive semigroup on the space of symmetric operators from a Banach space to its dual, and the quadratic part as an order concave map. A direct analog of global Newton’s iteration for concave functions is then used to approximate the solution, the approximations converge in the strong operator topology, and the convergence is monotone. The linearized equations are the well-known Lyapunov equations of the form $$A^*P+PA=-Q$$ A ∗ P + P A = - Q , and semigroup stability criterion in terms of them is also generalized.

Journal

PositivitySpringer Journals

Published: Oct 5, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off