Positive definite metric spaces

Positive definite metric spaces Magnitude is a numerical invariant of finite metric spaces, recently introduced by Leinster, which is analogous in precise senses to the cardinality of finite sets or the Euler characteristic of topological spaces. It has been extended to infinite metric spaces in several a priori distinct ways. This paper develops the theory of a class of metric spaces, positive definite metric spaces, for which magnitude is more tractable than in general. Positive definiteness is a generalization of the classical property of negative type for a metric space, which is known to hold for many interesting classes of spaces. It is proved that all the proposed definitions of magnitude coincide for compact positive definite metric spaces and further results are proved about the behavior of magnitude as a function of such spaces. Finally, some facts about the magnitude of compact subsets of $$\ell _p^n$$ for $$p \le 2$$ are proved, generalizing results of Leinster for $$p=1,2$$ using properties of these spaces which are somewhat stronger than positive definiteness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Positive definite metric spaces

Positivity , Volume 17 (3) – Sep 16, 2012
Loading next page...
 
/lp/springer_journal/positive-definite-metric-spaces-ZsJcAeFQx5
Publisher
Springer Basel
Copyright
Copyright © 2012 by Springer Basel AG
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-012-0202-8
Publisher site
See Article on Publisher Site

Abstract

Magnitude is a numerical invariant of finite metric spaces, recently introduced by Leinster, which is analogous in precise senses to the cardinality of finite sets or the Euler characteristic of topological spaces. It has been extended to infinite metric spaces in several a priori distinct ways. This paper develops the theory of a class of metric spaces, positive definite metric spaces, for which magnitude is more tractable than in general. Positive definiteness is a generalization of the classical property of negative type for a metric space, which is known to hold for many interesting classes of spaces. It is proved that all the proposed definitions of magnitude coincide for compact positive definite metric spaces and further results are proved about the behavior of magnitude as a function of such spaces. Finally, some facts about the magnitude of compact subsets of $$\ell _p^n$$ for $$p \le 2$$ are proved, generalizing results of Leinster for $$p=1,2$$ using properties of these spaces which are somewhat stronger than positive definiteness.

Journal

PositivitySpringer Journals

Published: Sep 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off