Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability

Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles:... Cytocompatibility is one of the most important aspects in evaluating biomaterials for tissue engineering applications. In this study, biodegradable polymer scaffolds based on nanocomposites of poly(l-lactic acid) and TiO2 nanoparticles functionalized with oleic acid (5 and 10 wt%) were prepared by thermally induced phase separation method. The aim of this research was to evaluate the properties of nanocomposite scaffolds and to investigate the influence of functionalized nanofiller on their bioactivity, biodegradability and cytocompatibility. The nanocomposite scaffolds showed bioactivity in supersaturated fluids and reduced biodegradation in simulated body fluid when compared to pure PLA scaffold. Cell viability and proliferation potential in contact with nanocomposite scaffolds were tested via MTT assay, while the scaffolds cytotoxic potential was evaluated using lactate dehydrogenase method. It was found that incorporation of functionalized TiO2 nanofiller with content of 5 wt% in the corresponding PLA matrix has a significant positive effect on the cell viability and proliferation, while at higher nanofiller content (10 wt%), insignificant cell proliferation and increased cytotoxicity were confirmed. Furthermore, PLA/TiO2–OA nanocomposite scaffolds were proved as promising materials for drug delivery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability

Loading next page...
 
/lp/springer_journal/porous-poly-l-lactic-acid-nanocomposite-scaffolds-with-functionalized-jcbX2TqGGp
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-018-2415-0
Publisher site
See Article on Publisher Site

Abstract

Cytocompatibility is one of the most important aspects in evaluating biomaterials for tissue engineering applications. In this study, biodegradable polymer scaffolds based on nanocomposites of poly(l-lactic acid) and TiO2 nanoparticles functionalized with oleic acid (5 and 10 wt%) were prepared by thermally induced phase separation method. The aim of this research was to evaluate the properties of nanocomposite scaffolds and to investigate the influence of functionalized nanofiller on their bioactivity, biodegradability and cytocompatibility. The nanocomposite scaffolds showed bioactivity in supersaturated fluids and reduced biodegradation in simulated body fluid when compared to pure PLA scaffold. Cell viability and proliferation potential in contact with nanocomposite scaffolds were tested via MTT assay, while the scaffolds cytotoxic potential was evaluated using lactate dehydrogenase method. It was found that incorporation of functionalized TiO2 nanofiller with content of 5 wt% in the corresponding PLA matrix has a significant positive effect on the cell viability and proliferation, while at higher nanofiller content (10 wt%), insignificant cell proliferation and increased cytotoxicity were confirmed. Furthermore, PLA/TiO2–OA nanocomposite scaffolds were proved as promising materials for drug delivery.

Journal

Journal of Materials ScienceSpringer Journals

Published: May 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off