POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light

POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide... During the sequencing of the genome of Arabidopsis thaliana a gene has been identified that encodes a novel NADPH-protochlorophyllide oxidoreductase (POR)-like protein (accession number AC 002560). This protein has been named POR C. We have expressed the POR C protein in Escherichia coli and have determined its in vitro activity. POR C shows the characteristics of a light-dependent and NADPH-requiring POR similar to POR A and POR B. The expression of the POR C gene differs markedly from that of the POR A and POR B genes. In contrast to the POR A and POR B mRNAs, the POR C mRNA has been shown previously to accumulate only after the beginning of illumination. In light-adapted mature plants only POR B and POR C mRNAs were detectable. The amounts of both mRNAs show pronounced diurnal rhythmic fluctuations. While the oscillations of POR B mRNA are under the control of the circadian clock, those of POR C mRNA are not. Another difference between POR B and POR C was found in seedlings that were grown under continuous white light. The concentration of POR C mRNA rapidly declined and soon dropped beyond the limit of detection, after these seedlings were transferred to the dark. On the other hand, POR B mRNA was unaffected by this light/dark shift. When seedlings were exposed to different light intensities, the amounts of POR B mRNA remained the same, while POR A and POR C mRNAs were modulated in an inverse way by these light intensity changes. POR A mRNA was still detectable in seedlings grown under low light intensities but disappeared at higher light intensities, while the mRNA concentration of POR C rose with increasing light intensities. These different responses to light suggest that the functions of the three PORs of Arabidopsis are not completely redundant, but may allow the plant to adapt its needs for chlorophyll biosynthesis more selectively by using preferentially one of the three enzymes under a given light regime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light

Loading next page...
Kluwer Academic Publishers
Copyright © 2001 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial