Population genetic structure of wild-growing ginseng (Planax ginseng C.A. Meyer) assessed using AFLP markers

Population genetic structure of wild-growing ginseng (Planax ginseng C.A. Meyer) assessed using... Genetic variability in ten populations of wild-growing ginseng was assessed using AFLP markers with the application of fragment analysis on a genetic analyzer. The variation indices were high in the populations (P = 55.68%, H S = 0.1891) and for the species (P = 99.65%; H S = 0.2857). Considerable and statistically significant population differentiation was demonstrated (θB = 0.363; Bayesian approach, “full model”; F ST = 0.36, AMOVA). The results of AMOVA and Bayesian analysis indicate that 64.46% of variability is found within the populations. Mantel test showed no correlation between the genetic and geographic distances among the populations (r = −0.174; p = 0.817). Hierarchical AMOVA and analysis of genetic relationships based on Euclidean distances (NJ, PCoA, and MST) identified two divergent population groups of ginseng. Low gene flow between these groups (N m = 0.4) suggests their demographic independence. In accordance to the concept of evolutionary significant units (ESU), these population groups, in terms of the strategy and tactics for conservation and management of natural resources, should be treated as management units (MUs). The MS tree topology suggests recolonization of southern Sikhote-Alin by ginseng along two directions, from south and west. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Population genetic structure of wild-growing ginseng (Planax ginseng C.A. Meyer) assessed using AFLP markers

Loading next page...
 
/lp/springer_journal/population-genetic-structure-of-wild-growing-ginseng-planax-ginseng-c-aYzGz05cT2
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Animal Genetics and Genomics; Microbial Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795412020135
Publisher site
See Article on Publisher Site

Abstract

Genetic variability in ten populations of wild-growing ginseng was assessed using AFLP markers with the application of fragment analysis on a genetic analyzer. The variation indices were high in the populations (P = 55.68%, H S = 0.1891) and for the species (P = 99.65%; H S = 0.2857). Considerable and statistically significant population differentiation was demonstrated (θB = 0.363; Bayesian approach, “full model”; F ST = 0.36, AMOVA). The results of AMOVA and Bayesian analysis indicate that 64.46% of variability is found within the populations. Mantel test showed no correlation between the genetic and geographic distances among the populations (r = −0.174; p = 0.817). Hierarchical AMOVA and analysis of genetic relationships based on Euclidean distances (NJ, PCoA, and MST) identified two divergent population groups of ginseng. Low gene flow between these groups (N m = 0.4) suggests their demographic independence. In accordance to the concept of evolutionary significant units (ESU), these population groups, in terms of the strategy and tactics for conservation and management of natural resources, should be treated as management units (MUs). The MS tree topology suggests recolonization of southern Sikhote-Alin by ginseng along two directions, from south and west.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off