Population genetic processes in introduction of fish

Population genetic processes in introduction of fish Introductions of alien species (populations) acquired a global scale, becoming a major factor of environmental change. Population genetic and ecological studies of these species promote understanding of evolutionary change and mechanisms of adaptation of the species introduced into a novel environment. This knowledge is of interest also with regard to conservation biology in connection with restoring endangered or extinct populations. The transplanted populations are subject to the founder effect and gene drift, which entails loss of genetic variation, inbreeding depression, and reduction of fitness of the introduced species. However, the decrease in the quantitative variability (additive genetic variance, which is directly affected by selection) prove to be significantly less than the loss in neutral molecular genetic variation. Maintenance of genetic variation at the level providing establishment of the invasive species requires a high number of introduced individuals and multiple introductions from different populations of the species. Introductions are accompanied by hybridization and genetic introgression of the invader with the indigenous species, which augments the variability and viability of the former, but are extremely deleterious to the latter. Adaptive changes of morphological and ecological traits and the formation of the population genetic structure in the new area occur very rapidly. The allied genetic divergence of the introduced population from the donor one may be directly or indirectly associated with the adaptation processes. Transplantation of anadromous salmonid species among hatcheries undertaken to increase the population numbers (i.e., introductions within the natural range) were of low efficiency owing to conservative local adaptations and low fitness of the transplanted fish. However, sometimes these transplantations were successful, if they involved geographically close populations with common origin and common evolutionary history. Numerous studies show negative genetic, ecological, and ecosystemic effects of introduction of alien species and populations, which should be taken into account when planning transplantations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Population genetic processes in introduction of fish

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2008 by MAIK Nauka
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial