Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion

Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy... Polyvinylidene fluoride (PVDF)/polyacrilonitrile (PAN)/multiwalled carbon nanotubes functionalized COOH (MWCNTs-COOH) nanocomposites with different contents of MWCNTs were fabricated by using electrospinning and solution cast methods. The interaction of the MWCNTs with the polymer blend was confirmed by a Fourier transform infrared (FTIR) spectroscopy study. The dispersion of the MWCNTs in the polymer blend was studied by scanning electron microscopy. The dispersion of the MWCNTs in the polymer matrix at different compositions has been examined by using scanning electron microscopy (SEM). Both individual and agglomerations of MWCNTs were evident. Multiwalled carbon nanotubes are capable of enhancing the impedance and electrical conductivity of PVDF-PAN/MWCNTs in a wide frequency range at different temperatures. Nanocomposites based on PVDF/PAN and MWCNTs as fillers show a significant enhancement in the electrical conductivity as a function of temperature. In addition, PVDF/PAN with 5.58 wt.% of MWCNTs has a much higher specific energy (129.7Wh/kg) compared to that of PVDF/PAN (15.57 Wh/kg).The results reveal that PVDF/PAN/MWCNTs composites have potential applications for nanogenerators, organic semiconductors, transducers, and electrical energy storage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Composites and Hybrid Materials Springer Journals

Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion

Loading next page...
 
/lp/springer_journal/polyvinylidene-fluoride-pvdf-polyacrylonitrile-pan-carbon-nanotube-oaxS9aacgn
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Materials Engineering; Polymer Sciences
ISSN
2522-0128
eISSN
2522-0136
D.O.I.
10.1007/s42114-017-0002-5
Publisher site
See Article on Publisher Site

Abstract

Polyvinylidene fluoride (PVDF)/polyacrilonitrile (PAN)/multiwalled carbon nanotubes functionalized COOH (MWCNTs-COOH) nanocomposites with different contents of MWCNTs were fabricated by using electrospinning and solution cast methods. The interaction of the MWCNTs with the polymer blend was confirmed by a Fourier transform infrared (FTIR) spectroscopy study. The dispersion of the MWCNTs in the polymer blend was studied by scanning electron microscopy. The dispersion of the MWCNTs in the polymer matrix at different compositions has been examined by using scanning electron microscopy (SEM). Both individual and agglomerations of MWCNTs were evident. Multiwalled carbon nanotubes are capable of enhancing the impedance and electrical conductivity of PVDF-PAN/MWCNTs in a wide frequency range at different temperatures. Nanocomposites based on PVDF/PAN and MWCNTs as fillers show a significant enhancement in the electrical conductivity as a function of temperature. In addition, PVDF/PAN with 5.58 wt.% of MWCNTs has a much higher specific energy (129.7Wh/kg) compared to that of PVDF/PAN (15.57 Wh/kg).The results reveal that PVDF/PAN/MWCNTs composites have potential applications for nanogenerators, organic semiconductors, transducers, and electrical energy storage.

Journal

Advanced Composites and Hybrid MaterialsSpringer Journals

Published: Sep 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off