Polymorphism in hybrid male sterility in wild-derived Mus musculus musculus strains on proximal chromosome 17

Polymorphism in hybrid male sterility in wild-derived Mus musculus musculus strains on proximal... The hybrid sterility-1 (Hst1) locus at Chr 17 causes male sterility in crosses between the house mouse subspecies Mus musculus domesticus (Mmd) and M. m. musculus (Mmm). This locus has been defined by its polymorphic variants in two laboratory strains (Mmd genome) when mated to PWD/Ph mice (Mmm genome): C57BL/10 (carrying the sterile allele) and C3H (fertile allele). The occurrence of sterile and/or fertile (wild Mmm × C57BL)F1 males is evidence that polymorphism for this trait also exists in natural populations of Mmm; however, the nature of this polymorphism remains unclear. Therefore, we derived two wild-origin Mmm strains, STUS and STUF, that produce sterile and fertile males, respectively, in crosses with C57BL mice. To determine the genetic basis underlying male fertility, the (STUS × STUF)F1 females were mated to C57BL/10 J males. About one-third of resulting hybrid males (33.8%) had a significantly smaller epididymis and testes than parental animals and lacked spermatozoa due to meiotic arrest. A further one-fifth of males (20.3%) also had anomalous reproductive traits but produced some spermatozoa. The remaining fertile males (45.9%) displayed no deviation from values found in parental individuals. QTL analysis of the progeny revealed strong associations of male fitness components with the proximal end of Chr 17, and a significant effect of the central section of Chr X on testes mass. The data suggest that genetic incompatibilities associated with male sterility have evolved independently at the proximal end of Chr 17 and are polymorphic within both Mmd and Mmm genomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Polymorphism in hybrid male sterility in wild-derived Mus musculus musculus strains on proximal chromosome 17

Loading next page...
 
/lp/springer_journal/polymorphism-in-hybrid-male-sterility-in-wild-derived-mus-musculus-0VxeloHN1t
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-008-9164-3
Publisher site
See Article on Publisher Site

Abstract

The hybrid sterility-1 (Hst1) locus at Chr 17 causes male sterility in crosses between the house mouse subspecies Mus musculus domesticus (Mmd) and M. m. musculus (Mmm). This locus has been defined by its polymorphic variants in two laboratory strains (Mmd genome) when mated to PWD/Ph mice (Mmm genome): C57BL/10 (carrying the sterile allele) and C3H (fertile allele). The occurrence of sterile and/or fertile (wild Mmm × C57BL)F1 males is evidence that polymorphism for this trait also exists in natural populations of Mmm; however, the nature of this polymorphism remains unclear. Therefore, we derived two wild-origin Mmm strains, STUS and STUF, that produce sterile and fertile males, respectively, in crosses with C57BL mice. To determine the genetic basis underlying male fertility, the (STUS × STUF)F1 females were mated to C57BL/10 J males. About one-third of resulting hybrid males (33.8%) had a significantly smaller epididymis and testes than parental animals and lacked spermatozoa due to meiotic arrest. A further one-fifth of males (20.3%) also had anomalous reproductive traits but produced some spermatozoa. The remaining fertile males (45.9%) displayed no deviation from values found in parental individuals. QTL analysis of the progeny revealed strong associations of male fitness components with the proximal end of Chr 17, and a significant effect of the central section of Chr X on testes mass. The data suggest that genetic incompatibilities associated with male sterility have evolved independently at the proximal end of Chr 17 and are polymorphic within both Mmd and Mmm genomes.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 3, 2009

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off