Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Polymorphic phase transition and morphotropic phase boundary in Ba1−x Ca x Ti1−y Zr y O3 ceramics

Polymorphic phase transition and morphotropic phase boundary in Ba1−x Ca x Ti1−y Zr y O3 ceramics This paper deals with Ca and Zr co-doped BaTiO3 (BCTZ(x, y)) (x = 0.1, 0.13, 0.2 and y = 0.05, 0.1, 0.15). These ceramics were prepared using the conventional solid state method. The symmetry, dielectric properties, Raman spectroscopy, ferroelectric behavior and piezoelectric effect were examined. X-ray diffraction (XRD) results display that morphotropic boundary occurs from tetragonal to orthorhombic region of BCZT(x=0.1, 0.2, y=0.05, 0.1) and polymorphic phase transitions from tetragonal to orthorhombic, orthorhombic to rhombohedral regions of BCZT(x=0.13, y=0.1). The evolution of the Raman spectra was investigated as a function of compositions at room temperature, in correlation with XRD analysis and dielectric measurements. We note that the substitution of Ca in Ba site and Zr ions in Ti site slightly decreased the cubic-tetragonal temperature transition (T C) and increased the orthorhombic–tetragonal (T 1) and rhombohedral–orthorhombic (T 2) temperatures transitions. The ferroelectric properties were examined by a P–E hysteresis loop. The two parameters ΔT 1 and ΔT 2 are defined as ΔT 1 = T C − T 1 and ΔT 2 = T C − T 2, they come close to T C for x = 0.13, y = 0.1, which reveals that this composition is around the polymorphic phase. The excellent piezoelectric coefficient of d 33 = 288 pC N−1, the electromechanical coupling factor k p = 40%, high constant dielectric 9105, coercive field E c = 0.32 (KV mm−1) and remanent polarization P r = 0.1 (µc mm−2) were obtained for composition x = 0.13, y = 0.1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Polymorphic phase transition and morphotropic phase boundary in Ba1−x Ca x Ti1−y Zr y O3 ceramics

Loading next page...
 
/lp/springer_journal/polymorphic-phase-transition-and-morphotropic-phase-boundary-in-ba1-x-caRV1OGUqx

References (48)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
DOI
10.1007/s00339-017-1196-7
Publisher site
See Article on Publisher Site

Abstract

This paper deals with Ca and Zr co-doped BaTiO3 (BCTZ(x, y)) (x = 0.1, 0.13, 0.2 and y = 0.05, 0.1, 0.15). These ceramics were prepared using the conventional solid state method. The symmetry, dielectric properties, Raman spectroscopy, ferroelectric behavior and piezoelectric effect were examined. X-ray diffraction (XRD) results display that morphotropic boundary occurs from tetragonal to orthorhombic region of BCZT(x=0.1, 0.2, y=0.05, 0.1) and polymorphic phase transitions from tetragonal to orthorhombic, orthorhombic to rhombohedral regions of BCZT(x=0.13, y=0.1). The evolution of the Raman spectra was investigated as a function of compositions at room temperature, in correlation with XRD analysis and dielectric measurements. We note that the substitution of Ca in Ba site and Zr ions in Ti site slightly decreased the cubic-tetragonal temperature transition (T C) and increased the orthorhombic–tetragonal (T 1) and rhombohedral–orthorhombic (T 2) temperatures transitions. The ferroelectric properties were examined by a P–E hysteresis loop. The two parameters ΔT 1 and ΔT 2 are defined as ΔT 1 = T C − T 1 and ΔT 2 = T C − T 2, they come close to T C for x = 0.13, y = 0.1, which reveals that this composition is around the polymorphic phase. The excellent piezoelectric coefficient of d 33 = 288 pC N−1, the electromechanical coupling factor k p = 40%, high constant dielectric 9105, coercive field E c = 0.32 (KV mm−1) and remanent polarization P r = 0.1 (µc mm−2) were obtained for composition x = 0.13, y = 0.1.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Aug 20, 2017

There are no references for this article.