Polymeric fullerene hydrides. Birch reduction of [60] fullerene polymers from solution-based photopolymerization and free radical polymerization reactions

Polymeric fullerene hydrides. Birch reduction of [60] fullerene polymers from solution-based... Fullerene polymers represent a new class of carbon materials for potential hydrogen storage applications. Poly[60]fullerene polymers were obtained by covalently linking [60]fullerene molecules in photochemical reactions. [60]Fullerene polymers were also prepared in free radical reactions of [60]fullerene with radical initiator benzoyl peroxide. The polymeric [60]fullerene materials were hydrogenated under Birch reduction conditions. The hydrides, which contain ≈3.5% (wt/wt) of hydrogen, were characterized by use of gel permeation chromatography, NMR, FT-IR, and elemental analysis. The results are compared with those of monomeric [60]fullerene hydrides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Polymeric fullerene hydrides. Birch reduction of [60] fullerene polymers from solution-based photopolymerization and free radical polymerization reactions

Loading next page...
 
/lp/springer_journal/polymeric-fullerene-hydrides-birch-reduction-of-60-fullerene-polymers-ETY99nd0TO
Publisher
Springer Netherlands
Copyright
Copyright © 1997 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856797X00231
Publisher site
See Article on Publisher Site

Abstract

Fullerene polymers represent a new class of carbon materials for potential hydrogen storage applications. Poly[60]fullerene polymers were obtained by covalently linking [60]fullerene molecules in photochemical reactions. [60]Fullerene polymers were also prepared in free radical reactions of [60]fullerene with radical initiator benzoyl peroxide. The polymeric [60]fullerene materials were hydrogenated under Birch reduction conditions. The hydrides, which contain ≈3.5% (wt/wt) of hydrogen, were characterized by use of gel permeation chromatography, NMR, FT-IR, and elemental analysis. The results are compared with those of monomeric [60]fullerene hydrides.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off