Polycystic Kidney Disease Channel and Synaptotagmin Homologues Play Roles in Schizosaccharomyces pombe Cell Wall Synthesis/Repair and Membrane Protein Trafficking

Polycystic Kidney Disease Channel and Synaptotagmin Homologues Play Roles in Schizosaccharomyces... Eukaryotic cells can sense a wide variety of environmental stresses, including changes in temperature, pH, osmolarity and nutrient availability. They respond to these changes through a variety of signal-transduction mechanisms, including activation of Ca2+-dependent signaling pathways. This research has discovered important implications in the function(s) of polycystic kidney disease (PKD) channels and the mechanisms through which they act in the control of cell growth and cell polarity in Schizosaccharomyces pombe by ion channel-mediated Ca2+ signaling. Pkd2 was expressed maximally during the exponential growth phase. At the cell surface pkd2 was localized at the cell tip during the G2 phase of the cell cycle, although following cell wall damage, the cell surface-expressed protein relocalized to the whole plasma membrane. Pkd2 depletion affected Golgi trafficking, resulting in a buildup of vesicles at the cell poles, and strongly affected plasma membrane protein delivery. Surface-localized pkd2 was present in the plasma membrane for a very short time and was rapidly internalized. Internalization was dependent on Ca2+, enhanced by amphipaths and inhibited by gadolinium. The pkd2 protein was in a complex with a yeast synaptotagmin homologue and myosin V. Depletion of pkd2 severely affected the localization of glucan synthase. A role for pkd2 in a cell polarity and cell wall synthesis signaling complex with a synaptotagmin homologue, myosin V and glucan synthase is proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Polycystic Kidney Disease Channel and Synaptotagmin Homologues Play Roles in Schizosaccharomyces pombe Cell Wall Synthesis/Repair and Membrane Protein Trafficking

Loading next page...
 
/lp/springer_journal/polycystic-kidney-disease-channel-and-synaptotagmin-homologues-play-8LiWZSIHvh
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-009-9180-6
Publisher site
See Article on Publisher Site

Abstract

Eukaryotic cells can sense a wide variety of environmental stresses, including changes in temperature, pH, osmolarity and nutrient availability. They respond to these changes through a variety of signal-transduction mechanisms, including activation of Ca2+-dependent signaling pathways. This research has discovered important implications in the function(s) of polycystic kidney disease (PKD) channels and the mechanisms through which they act in the control of cell growth and cell polarity in Schizosaccharomyces pombe by ion channel-mediated Ca2+ signaling. Pkd2 was expressed maximally during the exponential growth phase. At the cell surface pkd2 was localized at the cell tip during the G2 phase of the cell cycle, although following cell wall damage, the cell surface-expressed protein relocalized to the whole plasma membrane. Pkd2 depletion affected Golgi trafficking, resulting in a buildup of vesicles at the cell poles, and strongly affected plasma membrane protein delivery. Surface-localized pkd2 was present in the plasma membrane for a very short time and was rapidly internalized. Internalization was dependent on Ca2+, enhanced by amphipaths and inhibited by gadolinium. The pkd2 protein was in a complex with a yeast synaptotagmin homologue and myosin V. Depletion of pkd2 severely affected the localization of glucan synthase. A role for pkd2 in a cell polarity and cell wall synthesis signaling complex with a synaptotagmin homologue, myosin V and glucan synthase is proposed.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 19, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off