Poly-β-hydroxybutyrate (PHB) biosynthesis, tricarboxylic acid activity and PHB content in chickpea (Cicer arietinum L.) root nodule

Poly-β-hydroxybutyrate (PHB) biosynthesis, tricarboxylic acid activity and PHB content in... An experiment was conducted to assess the relationship between poly-β-hydroxybutyrate (PHB) biosynthesis and tricarboxylic acid (TCA) activity in desi and kabuli chickpea (Cicer arietinum L.) genotypes. The specific activities of enzymes of PHB metabolism viz., β-ketothiolase (PHB-A), acetoacetyl coenzyme A reductase (PHB-B) and PHB synthase (PHB-C), and those of tricarboxylic acid cycle (citrate synthase (CS) and malate dehydrogenase (MDH) under symbiosis were measured in bacteroids and compared with the PHB accumulation in the nodule and the root. The significant positive correlation was observed between shoot and nodule mass and PHB-A, PHB-B, and PHB-C activities. However, nodule and shoot weights were not significantly correlated with PHB content either in the roots or nodules. The same was true for PHB levels and citrate synthase activity. MDH activity showed a significant negative correlation with nodule PHB. A marked variation and an age dependant increase in malate dehydrogenase activity were measured. A higher capacity for malate oxidation by an increased MDH is likely alter the balance between malate decarboxylation and oxidation, resulting in a higher steady-state concentration of oxaloacetate and that may favor the utilization of acetyl-CoA in the TCA cycle rather than for the synthesis of PHB. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Poly-β-hydroxybutyrate (PHB) biosynthesis, tricarboxylic acid activity and PHB content in chickpea (Cicer arietinum L.) root nodule

Loading next page...
 
/lp/springer_journal/poly-hydroxybutyrate-phb-biosynthesis-tricarboxylic-acid-activity-and-NhfoZiBdpR
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717050119
Publisher site
See Article on Publisher Site

Abstract

An experiment was conducted to assess the relationship between poly-β-hydroxybutyrate (PHB) biosynthesis and tricarboxylic acid (TCA) activity in desi and kabuli chickpea (Cicer arietinum L.) genotypes. The specific activities of enzymes of PHB metabolism viz., β-ketothiolase (PHB-A), acetoacetyl coenzyme A reductase (PHB-B) and PHB synthase (PHB-C), and those of tricarboxylic acid cycle (citrate synthase (CS) and malate dehydrogenase (MDH) under symbiosis were measured in bacteroids and compared with the PHB accumulation in the nodule and the root. The significant positive correlation was observed between shoot and nodule mass and PHB-A, PHB-B, and PHB-C activities. However, nodule and shoot weights were not significantly correlated with PHB content either in the roots or nodules. The same was true for PHB levels and citrate synthase activity. MDH activity showed a significant negative correlation with nodule PHB. A marked variation and an age dependant increase in malate dehydrogenase activity were measured. A higher capacity for malate oxidation by an increased MDH is likely alter the balance between malate decarboxylation and oxidation, resulting in a higher steady-state concentration of oxaloacetate and that may favor the utilization of acetyl-CoA in the TCA cycle rather than for the synthesis of PHB.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off