Pointwise Estimates for Bipolar Compressible Navier–Stokes–Poisson System in Dimension Three

Pointwise Estimates for Bipolar Compressible Navier–Stokes–Poisson System in Dimension Three The Cauchy problem of the bipolar Navier–Stokes–Poisson system (1.1) in dimension three is considered. We obtain the pointwise estimates of the time-asymptotic shape of the solution, which exhibit a generalized Huygens’ principle as the Navier–Stokes system. This phenomenon is the most important difference from the unipolar Navier–Stokes–Poisson system. Due to the non-conservative structure of the system (1.1) and the interplay of two carriers which counteract the influence of the electric field (a nonlocal term), some new observations are essential for the proof. We fully use the conservative structure of the system for the total density and total momentum, and the mechanism of the linearized unipolar Navier–Stokes–Poisson system together with the special form of the nonlinear terms in the system for the difference of densities and the difference of momentums. Lastly, as a byproduct, we extend the usual $${L^2({\mathbb{R}}^3)}$$ L 2 ( R 3 ) -decay rate to the $${L^p({\mathbb{R}}^3)}$$ L p ( R 3 ) -decay rate with $${p > 1}$$ p > 1 and also improve former decay rates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive for Rational Mechanics and Analysis Springer Journals

Pointwise Estimates for Bipolar Compressible Navier–Stokes–Poisson System in Dimension Three

Loading next page...
 
/lp/springer_journal/pointwise-estimates-for-bipolar-compressible-navier-stokes-poisson-lwgujFVZ41
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Classical Mechanics; Physics, general; Theoretical, Mathematical and Computational Physics; Complex Systems; Fluid- and Aerodynamics
ISSN
0003-9527
eISSN
1432-0673
D.O.I.
10.1007/s00205-017-1140-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial