Point-based rendering enhancement via deep learning

Point-based rendering enhancement via deep learning Current state-of-the-art point rendering techniques such as splat rendering generally require very high-resolution point clouds in order to create high-quality photo realistic renderings. These can be very time consuming to acquire and oftentimes also require high-end expensive scanners. This paper proposes a novel deep learning-based approach that can generate high-resolution photo realistic point renderings from low-resolution point clouds. More specifically, we propose to use co-registered high-quality photographs as the ground truth data to train the deep neural network for point-based rendering. The proposed method can generate high-quality point rendering images very efficiently and can be used for interactive navigation of large-scale 3D scenes as well as image-based localization. Extensive quantitative evaluations on both synthetic and real datasets show that the proposed method outperforms state-of-the-art methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Visual Computer Springer Journals

Point-based rendering enhancement via deep learning

Loading next page...
 
/lp/springer_journal/point-based-rendering-enhancement-via-deep-learning-6N92KOk2tQ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Computer Science; Computer Graphics; Computer Science, general; Artificial Intelligence (incl. Robotics); Image Processing and Computer Vision
ISSN
0178-2789
eISSN
1432-2315
D.O.I.
10.1007/s00371-018-1550-6
Publisher site
See Article on Publisher Site

Abstract

Current state-of-the-art point rendering techniques such as splat rendering generally require very high-resolution point clouds in order to create high-quality photo realistic renderings. These can be very time consuming to acquire and oftentimes also require high-end expensive scanners. This paper proposes a novel deep learning-based approach that can generate high-resolution photo realistic point renderings from low-resolution point clouds. More specifically, we propose to use co-registered high-quality photographs as the ground truth data to train the deep neural network for point-based rendering. The proposed method can generate high-quality point rendering images very efficiently and can be used for interactive navigation of large-scale 3D scenes as well as image-based localization. Extensive quantitative evaluations on both synthetic and real datasets show that the proposed method outperforms state-of-the-art methods.

Journal

The Visual ComputerSpringer Journals

Published: May 11, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off