Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana

Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana A full-length cDNA clone encoding deoxyhypusine synthase (DHS) was isolated from a cDNA expression library prepared from senescing leaves of Arabidopsis thaliana. Southern blot analysis indicated that DHS is encoded by a single-copy gene in Arabidopsis. During leaf development, the abundance of DHS mRNA in the third pair of rosette leaves peaked at days 14 and 35 after emergence coincident with the initiation of bolting and the later stages of leaf senescence, respectively. These changes in DHS expression were paralleled by corresponding changes in transcript abundance for eIF-5A1, one of three isoforms of eIF-5A in Arabidopsis. Levels of DHS transcript also increased in detached leaves coincident with post-harvest senescence. DHS was suppressed in transgenic plants by introducing antisense full-length or 3′-untranslated Arabidopsis DHS cDNA under the regulation of the constitutive cauliflower mosaic virus (CaMV-35S) promoter. Plants expressing the antisense transgenes had reduced levels of leaf DHS protein and, depending on the level of DHS suppression, exhibited delayed natural leaf senescence, delayed bolting, increased rosette leaf and root biomass, and enhanced seed yield. Suppression of DHS also delayed premature leaf senescence induced by drought stress resulting in enhanced survival in comparison with wild-type plants. In addition, detached leaves from DHS-suppressed plants exhibited delayed post-harvest senescence. These pleiotropic effects of DHS suppression indicate that the protein plays a central role in plant development and senescence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/pleiotropic-effects-of-suppressing-deoxyhypusine-synthase-expression-sRU1jkAkM1
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/B:PLAN.0000004332.80792.4d
Publisher site
See Article on Publisher Site

Abstract

A full-length cDNA clone encoding deoxyhypusine synthase (DHS) was isolated from a cDNA expression library prepared from senescing leaves of Arabidopsis thaliana. Southern blot analysis indicated that DHS is encoded by a single-copy gene in Arabidopsis. During leaf development, the abundance of DHS mRNA in the third pair of rosette leaves peaked at days 14 and 35 after emergence coincident with the initiation of bolting and the later stages of leaf senescence, respectively. These changes in DHS expression were paralleled by corresponding changes in transcript abundance for eIF-5A1, one of three isoforms of eIF-5A in Arabidopsis. Levels of DHS transcript also increased in detached leaves coincident with post-harvest senescence. DHS was suppressed in transgenic plants by introducing antisense full-length or 3′-untranslated Arabidopsis DHS cDNA under the regulation of the constitutive cauliflower mosaic virus (CaMV-35S) promoter. Plants expressing the antisense transgenes had reduced levels of leaf DHS protein and, depending on the level of DHS suppression, exhibited delayed natural leaf senescence, delayed bolting, increased rosette leaf and root biomass, and enhanced seed yield. Suppression of DHS also delayed premature leaf senescence induced by drought stress resulting in enhanced survival in comparison with wild-type plants. In addition, detached leaves from DHS-suppressed plants exhibited delayed post-harvest senescence. These pleiotropic effects of DHS suppression indicate that the protein plays a central role in plant development and senescence.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off