Platoon-Based Cooperative Adaptive Cruise Control for Achieving Active Safe Driving Through Mobile Vehicular Cloud Computing

Platoon-Based Cooperative Adaptive Cruise Control for Achieving Active Safe Driving Through... The cooperative adaptive cruise control (CACC) aims to achieve active safe driving that avoids vehicle accidents or a traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC the butterfly effect is happened while exhibiting asynchronous brakes that easily lead to backward shockwaves and difficult to be removed. Thus, the driving stability is degraded significantly by backward shockwaves and affects the safe driving performance in CACC. Several critical issues should be addressed in CACC, including: (1) difficult to adaptively control the inter-vehicle distances among neighbor vehicles and the vehicle speed, (2) suffering from the butterfly effect, (3) unstable vehicle traffic flow, etc. For addressing above issues in CACC, this paper thus proposes the cooperative adaptive driving (CAD) approach that consists of three contributions: cooperative vehicle platooning (CVP), shockwave-avoidance driving (SAD), and adaptive platoon synchronization (APS). First, a platoon-based cooperative driving among neighbor vehicles is proposed in CVP. Second, in SAD, the predictive shockwave detection is proposed to avoid shockwaves efficiently. Third, based on the traffic states, APS determines the adaptive platoon length and velocity for achieving synchronous control and reduces the butterfly effect when vehicles suddenly brake. Numerical results demonstrate that the proposed CAD approach outperforms the compared approaches in number of shockwaves, average affection range of shockwaves, average vehicle velocity, and average travel time. Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Platoon-Based Cooperative Adaptive Cruise Control for Achieving Active Safe Driving Through Mobile Vehicular Cloud Computing

Loading next page...
 
/lp/springer_journal/platoon-based-cooperative-adaptive-cruise-control-for-achieving-active-n6QYEB300p
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4789-8
Publisher site
See Article on Publisher Site

Abstract

The cooperative adaptive cruise control (CACC) aims to achieve active safe driving that avoids vehicle accidents or a traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC the butterfly effect is happened while exhibiting asynchronous brakes that easily lead to backward shockwaves and difficult to be removed. Thus, the driving stability is degraded significantly by backward shockwaves and affects the safe driving performance in CACC. Several critical issues should be addressed in CACC, including: (1) difficult to adaptively control the inter-vehicle distances among neighbor vehicles and the vehicle speed, (2) suffering from the butterfly effect, (3) unstable vehicle traffic flow, etc. For addressing above issues in CACC, this paper thus proposes the cooperative adaptive driving (CAD) approach that consists of three contributions: cooperative vehicle platooning (CVP), shockwave-avoidance driving (SAD), and adaptive platoon synchronization (APS). First, a platoon-based cooperative driving among neighbor vehicles is proposed in CVP. Second, in SAD, the predictive shockwave detection is proposed to avoid shockwaves efficiently. Third, based on the traffic states, APS determines the adaptive platoon length and velocity for achieving synchronous control and reduces the butterfly effect when vehicles suddenly brake. Numerical results demonstrate that the proposed CAD approach outperforms the compared approaches in number of shockwaves, average affection range of shockwaves, average vehicle velocity, and average travel time. Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off