Plasmon- exciton induced circular dichroism in Gold/PMMA (RB) complex

Plasmon- exciton induced circular dichroism in Gold/PMMA (RB) complex We have investigated the strong coupling between exciton-plasmon by the aid of reflectance spectroscopy under different dye molecules weight in the samples. For this purpose, we have prepared five different samples as Glass/Cr/Au/PMMA (RBx); in which the weight of RB has been changed from 0 to 4 mg. The spectroscopy of the samples has been done under angular modulation and also the dispersion relation of the samples has been extracted from this measurement. These measurements revealed the formation of two split polaritonic extreme in reflectance spectra as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersiondiagram which presented an extra allowed mode between the polaritonic branches. After that, the circular dichroism spectra of samples have been measured to see the strong coupling circular dichroism. Our results show that, we have significant change in the dichroism of gold thin film due to strong coupling in all of visible region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Plasmon- exciton induced circular dichroism in Gold/PMMA (RB) complex

Loading next page...
 
/lp/springer_journal/plasmon-exciton-induced-circular-dichroism-in-gold-pmma-rb-complex-BodrRa0KPn
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7153-6
Publisher site
See Article on Publisher Site

Abstract

We have investigated the strong coupling between exciton-plasmon by the aid of reflectance spectroscopy under different dye molecules weight in the samples. For this purpose, we have prepared five different samples as Glass/Cr/Au/PMMA (RBx); in which the weight of RB has been changed from 0 to 4 mg. The spectroscopy of the samples has been done under angular modulation and also the dispersion relation of the samples has been extracted from this measurement. These measurements revealed the formation of two split polaritonic extreme in reflectance spectra as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersiondiagram which presented an extra allowed mode between the polaritonic branches. After that, the circular dichroism spectra of samples have been measured to see the strong coupling circular dichroism. Our results show that, we have significant change in the dichroism of gold thin film due to strong coupling in all of visible region.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off