Plasmon-enhanced optical bending and heating on V-shaped deformation of gold nanorod

Plasmon-enhanced optical bending and heating on V-shaped deformation of gold nanorod The plasmon-enhanced optical bending and heating on the V-shaped deformation of a straight gold nanorod (GNR), irradiated by a linear polarized light at the longitudinal surface plasmon resonance, are studied theoretically to explain the finding in previous experiment. Multiple multipole method is employed to calculate the optical load and heating numerically, and an elastic beam model is used to analyze the bending moment and stress in the GNR theoretically. According to our analysis, we think, first, the plasmonic heating softens the GNR to reduce the yield strength of gold, and the non-uniform optical load induces a maximum bending moment at the middle cross section of a freestanding GNR. Then an irreversible breakpoint of the plastic hinge at the middle of GNR is developed to form a V-shaped GNR. The photothermal deformation of V-shaped GNR involving multidisciplinary interplay is worth for further investigation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Plasmon-enhanced optical bending and heating on V-shaped deformation of gold nanorod

Loading next page...
 
/lp/springer_journal/plasmon-enhanced-optical-bending-and-heating-on-v-shaped-deformation-gS0GzLlUCJ
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-017-1433-0
Publisher site
See Article on Publisher Site

Abstract

The plasmon-enhanced optical bending and heating on the V-shaped deformation of a straight gold nanorod (GNR), irradiated by a linear polarized light at the longitudinal surface plasmon resonance, are studied theoretically to explain the finding in previous experiment. Multiple multipole method is employed to calculate the optical load and heating numerically, and an elastic beam model is used to analyze the bending moment and stress in the GNR theoretically. According to our analysis, we think, first, the plasmonic heating softens the GNR to reduce the yield strength of gold, and the non-uniform optical load induces a maximum bending moment at the middle cross section of a freestanding GNR. Then an irreversible breakpoint of the plastic hinge at the middle of GNR is developed to form a V-shaped GNR. The photothermal deformation of V-shaped GNR involving multidisciplinary interplay is worth for further investigation.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off