Plasmodesmata as a Modulator of Osmotic Water Fluxes in Plants

Plasmodesmata as a Modulator of Osmotic Water Fluxes in Plants Solutions to some key problems in the relationships between the structure and functions of plasmodesmata, a component of the plant intercellular communication system, are proposed on the basis of the theory of osmotic flows through porous membranes. The theory accounts for structural characteristics of plasmodesmata, such as their dimension, shape, and length. It considers the steric and adsorption potentials of the solution–cell wall interaction and estimates water and solute (e.g., sucrose) flows under the sustained difference of osmotic pressures at the ends of plasmodesmata. The theory predicts that the water flow through plasmodesmata increases with the widening of the neck constriction and reaches its peak when its size is equal to the diameter of the solute molecule. The water-flow direction was found to depend on the opening of the annulus in neck constrictions at negative adsorption potentials of the plasmodesmata channel walls. Taking into account the presence of sphincters in the neck constrictions, our data suggest the role of plasmodesmata as a modulator of osmotic water fluxes in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Plasmodesmata as a Modulator of Osmotic Water Fluxes in Plants

Loading next page...
1
 
/lp/springer_journal/plasmodesmata-as-a-modulator-of-osmotic-water-fluxes-in-plants-aQMPCvKAhe
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1020201321121
Publisher site
See Article on Publisher Site

Abstract

Solutions to some key problems in the relationships between the structure and functions of plasmodesmata, a component of the plant intercellular communication system, are proposed on the basis of the theory of osmotic flows through porous membranes. The theory accounts for structural characteristics of plasmodesmata, such as their dimension, shape, and length. It considers the steric and adsorption potentials of the solution–cell wall interaction and estimates water and solute (e.g., sucrose) flows under the sustained difference of osmotic pressures at the ends of plasmodesmata. The theory predicts that the water flow through plasmodesmata increases with the widening of the neck constriction and reaches its peak when its size is equal to the diameter of the solute molecule. The water-flow direction was found to depend on the opening of the annulus in neck constrictions at negative adsorption potentials of the plasmodesmata channel walls. Taking into account the presence of sphincters in the neck constrictions, our data suggest the role of plasmodesmata as a modulator of osmotic water fluxes in plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off