Plants water soluble chlorophyll binding proteins act as enzyme-inhibitor pair

Plants water soluble chlorophyll binding proteins act as enzyme-inhibitor pair The hydrophilic water-soluble chlorophyll binding proteins (WSCP) which form complex with chlorophyll molecules have been numerously isolated from the chloroplasts of plants. Although, their molecular properties have been partly characterized, but their physio-biochemical roles are still unclear in the photosynthesizing organs. In this study, using bioinformatic tools WSCP pair were predicted to act as hydrolase and hydrolase inhibitor towards chlorophyll molecules. To enhance our information regarding the possible functions of WSCP, we cloned WSCP1 and WSCP2 cDNAs from Chenopodium album L. and Brassica oleracea L. leaves and expressed them as soluble maltose-binding fusion proteins in Escherichia coli. The purified fused products were subjected to chlorophyll hydrolyzing activity in vitro. The results showed that WSCP1 and WCSP2 are antagonistically involved in chlorophyll breakdown, while WSCP1 acts as chlorophyll hydrolyzing enzyme (with the hydrolysis rate of about 40% per 12 h), WSCP2 exerts inhibitory activity (with the inhibition rate of about 38% per 12 h) towards chlorophyll hydrolysis. This is the first ever time report speculates the hydrolase/inhibitory roles for WSCP and proposes that the relative activity of WSCP pair might balance and regulate the chlorophyll breakdown process in the photosynthetic apparatus of plants. It may open the new gate to investigate the potent roles of WSCP in plant system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Plants water soluble chlorophyll binding proteins act as enzyme-inhibitor pair

Loading next page...
 
/lp/springer_journal/plants-water-soluble-chlorophyll-binding-proteins-act-as-enzyme-eQh0LNFwU4
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717010095
Publisher site
See Article on Publisher Site

Abstract

The hydrophilic water-soluble chlorophyll binding proteins (WSCP) which form complex with chlorophyll molecules have been numerously isolated from the chloroplasts of plants. Although, their molecular properties have been partly characterized, but their physio-biochemical roles are still unclear in the photosynthesizing organs. In this study, using bioinformatic tools WSCP pair were predicted to act as hydrolase and hydrolase inhibitor towards chlorophyll molecules. To enhance our information regarding the possible functions of WSCP, we cloned WSCP1 and WSCP2 cDNAs from Chenopodium album L. and Brassica oleracea L. leaves and expressed them as soluble maltose-binding fusion proteins in Escherichia coli. The purified fused products were subjected to chlorophyll hydrolyzing activity in vitro. The results showed that WSCP1 and WCSP2 are antagonistically involved in chlorophyll breakdown, while WSCP1 acts as chlorophyll hydrolyzing enzyme (with the hydrolysis rate of about 40% per 12 h), WSCP2 exerts inhibitory activity (with the inhibition rate of about 38% per 12 h) towards chlorophyll hydrolysis. This is the first ever time report speculates the hydrolase/inhibitory roles for WSCP and proposes that the relative activity of WSCP pair might balance and regulate the chlorophyll breakdown process in the photosynthetic apparatus of plants. It may open the new gate to investigate the potent roles of WSCP in plant system.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off