Plant virus transmission by plasmodiophorid fungi is associated with distinctive transmembrane regions of virus-encoded proteins

Plant virus transmission by plasmodiophorid fungi is associated with distinctive transmembrane... Computer analysis of published sequence data has consistently identified two complementary transmembrane domains in the coat protein readthrough domains of benyviruses, furoviruses and pomoviruses and in the P2 proteins of bymoviruses. These viruses differ in genome organisation but are all transmitted by plasmodiophorid fungi. The second domain is absent or disrupted in naturally-occurring deletion mutants that cannot be fungally-transmitted. In a non-transmissible substitution mutant of Beet necrotic yellow vein virus (Tamada et al. (1996) J Gen Virol 77: 1359–1367), the alignment of the helices is disrupted. From conserved patterns detected in transmembrane helix sequences and calculated relative helix tilts, structural arrangements consistent with tight packing of transmembrane helices were identified. These included ridge/groove arrangements between the two helices and strong electrostatic associations at the interfacial regions of the membrane. The data strongly suggest that these transmembrane helices facilitate the movement of virus particles across the fungal membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Plant virus transmission by plasmodiophorid fungi is associated with distinctive transmembrane regions of virus-encoded proteins

Loading next page...
 
/lp/springer_journal/plant-virus-transmission-by-plasmodiophorid-fungi-is-associated-with-jyTnLDc1Q0
Publisher
Springer Journals
Copyright
Copyright © 2001 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050170111
Publisher site
See Article on Publisher Site

Abstract

Computer analysis of published sequence data has consistently identified two complementary transmembrane domains in the coat protein readthrough domains of benyviruses, furoviruses and pomoviruses and in the P2 proteins of bymoviruses. These viruses differ in genome organisation but are all transmitted by plasmodiophorid fungi. The second domain is absent or disrupted in naturally-occurring deletion mutants that cannot be fungally-transmitted. In a non-transmissible substitution mutant of Beet necrotic yellow vein virus (Tamada et al. (1996) J Gen Virol 77: 1359–1367), the alignment of the helices is disrupted. From conserved patterns detected in transmembrane helix sequences and calculated relative helix tilts, structural arrangements consistent with tight packing of transmembrane helices were identified. These included ridge/groove arrangements between the two helices and strong electrostatic associations at the interfacial regions of the membrane. The data strongly suggest that these transmembrane helices facilitate the movement of virus particles across the fungal membrane.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off