Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner

Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner Nonsense-mediated decay (NMD) is a quality control mechanism that identifies and degrades aberrant mRNAs containing premature termination codons (PTC). NMD also regulates the expression of many wild-type genes. In plants, NMD identifies a stop codon as a PTC and initiates the rapid degradation of the transcript if the 3′untranslated region (UTR) is unusually long or if it harbors an intron. Approximately 20% of plant transcripts have an upstream ORF (uORF) in the 5′UTR. In theory, if a uORF is translated, the 3′UTR downstream of the uORF will be long and harbor introns, thus these transcripts might be degraded by NMD. Therefore, if uORFs can trigger NMD, uORF containing transcripts would be a major group of NMD regulated wild-type plant mRNAs. The aim of this study was to clarify whether plant uORFs could activate NMD. Here we demonstrate that plant uORFs induce NMD in a size-dependent manner, a 50 amino acid (aa) long uORF triggered NMD efficiently, whereas similar but shorter (31 and 15 aa long) uORFs failed to activate NMD response. We have found that only ~2% of annotated Arabidopsis genes contain a first uORF that is longer than 35 aa, thus we propose that NMD regulates only a small fraction of uORF containing transcripts. However, as mRNAs having uORF that is longer than the critical size are strongly overrepresented within the up-regulated transcripts of NMD deficient plants, it is likely that this subset of natural NMD targets induces NMD because of containing a relatively long translatable uORF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner

Loading next page...
 
/lp/springer_journal/plant-upstream-orfs-can-trigger-nonsense-mediated-mrna-decay-in-a-size-0KhU5Ailva
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9528-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial