Plant Sar1 isoforms with near-identical protein sequences exhibit different localisations and effects on secretion

Plant Sar1 isoforms with near-identical protein sequences exhibit different localisations and... In plants, differentiation of subdomains of the endoplasmic reticulum (ER) dedicated to protein export, the ER export sites (ERES), is influenced by the type of export-competent membrane cargo to be delivered to the Golgi. This raises a fundamental biological question: is the formation of transport intermediates at the ER for trafficking to the Golgi always regulated in the same manner? To test this, we followed the distribution and activity of two plant Sar1 isoforms. Sar1 is the small GTPase that regulates assembly of COPII (coat protein complex II) on carriers that transport secretory cargo from ER to Golgi. We show that, in contrast to a tobacco Sar1 isoform, the two Arabidopsis Sar1 GTPases were localised at ERES, independently of co-expression of Golgi-destined membrane cargo in tobacco cells. Although both isoforms labelled ERES, one was found to partition with the membrane fraction to a greater extent. The different distribution of fluorescent fusions of the two isoforms was influenced by the nature of an amino acid residue at the C-terminus of the protein, suggesting that the requirements for membrane association of the two GTPases are not equal. Furthermore, functional analyses based on the secretion of the bulk flow marker α-amylase indicated that over-expression of GTP-restricted mutants of the two isoforms caused different levels of ER export inhibition. These novel results indicate a functional heterogeneity among plant Sar1 isoforms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Plant Sar1 isoforms with near-identical protein sequences exhibit different localisations and effects on secretion

Loading next page...
 
/lp/springer_journal/plant-sar1-isoforms-with-near-identical-protein-sequences-exhibit-ZD00SoGSMi
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9317-5
Publisher site
See Article on Publisher Site

Abstract

In plants, differentiation of subdomains of the endoplasmic reticulum (ER) dedicated to protein export, the ER export sites (ERES), is influenced by the type of export-competent membrane cargo to be delivered to the Golgi. This raises a fundamental biological question: is the formation of transport intermediates at the ER for trafficking to the Golgi always regulated in the same manner? To test this, we followed the distribution and activity of two plant Sar1 isoforms. Sar1 is the small GTPase that regulates assembly of COPII (coat protein complex II) on carriers that transport secretory cargo from ER to Golgi. We show that, in contrast to a tobacco Sar1 isoform, the two Arabidopsis Sar1 GTPases were localised at ERES, independently of co-expression of Golgi-destined membrane cargo in tobacco cells. Although both isoforms labelled ERES, one was found to partition with the membrane fraction to a greater extent. The different distribution of fluorescent fusions of the two isoforms was influenced by the nature of an amino acid residue at the C-terminus of the protein, suggesting that the requirements for membrane association of the two GTPases are not equal. Furthermore, functional analyses based on the secretion of the bulk flow marker α-amylase indicated that over-expression of GTP-restricted mutants of the two isoforms caused different levels of ER export inhibition. These novel results indicate a functional heterogeneity among plant Sar1 isoforms.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 6, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off