Plant macrofossil assemblages from surface sediment represent contemporary species and growth forms of aquatic vegetation in a shallow Mediterranean lake

Plant macrofossil assemblages from surface sediment represent contemporary species and growth... Macrofossils are known as a useful tool in reconstructing their original plant communities. However, most studies have been focused on comparing the composition and distribution of living plant communities and their remains in temperate lakes. Mediterranean shallow lakes have been historically far less studied and little is known about the relationships between Mediterranean macrophyte communities and their remains. The aim of our study is to assess how contemporary aquatic macrophyte communities are represented by their sedimentary remains in terms of composition, distribution and concordance between the contemporary and the subfossil assemblages in a procrustean superimposition space, and to determine which surface sediment cores, collected along a depth gradient, may represent best the whole-lake macrofossil assemblage. These analyses were carried out for both species and macrophyte growth forms (submerged hydrophytes, floating-leaved hydrophytes, helophytes and charophytes) in order to check which of the two (species and growth forms) were represented best by their macro-remains. The most abundant present-day species (Myriophyllum alterniflorum DC. and Potamogeton trichoides L.) were under-represented while Characeae and some floating-leaved hydrophytes (Polygonum amphibium L. and Ranunculus peltatus Schrank) were over-represented in sedimentary samples. Additionally, macro-remains of submerged hydrophytes and helophytes were generally found in the central areas and in close proximity to contemporary vegetation, whereas floating-leaved hydrophytes distributed close to the near-shore. Notwithstanding some disparities between contemporary vegetation and their macrofossil assemblages, we found a good agreement between present-day and sedimentary datasets for both species and macrophyte growth forms. Furthermore, our study suggests that sediment cores from deep areas are more likely to represent best the whole-lake macrofossil assemblage because of their high diversity, equitability and heterogeneity. We conclude that aquatic macrophyte subfossils from the central areas of the basin can be a very useful tool in tracking the species composition and structure of the original macrophyte communities in shallow Mediterranean lakes. Additionally, when considering the use of macro-remains to reconstruct the composition and structure of macrophyte growth forms, we recommend a multicore approach that uses transects running from the shore to the lake center. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Paleolimnology Springer Journals

Plant macrofossil assemblages from surface sediment represent contemporary species and growth forms of aquatic vegetation in a shallow Mediterranean lake

Loading next page...
 
/lp/springer_journal/plant-macrofossil-assemblages-from-surface-sediment-represent-02TfeRr8p2
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Paleontology; Sedimentology; Climate Change; Physical Geography; Freshwater & Marine Ecology; Geology
ISSN
0921-2728
eISSN
1573-0417
D.O.I.
10.1007/s10933-018-0036-x
Publisher site
See Article on Publisher Site

Abstract

Macrofossils are known as a useful tool in reconstructing their original plant communities. However, most studies have been focused on comparing the composition and distribution of living plant communities and their remains in temperate lakes. Mediterranean shallow lakes have been historically far less studied and little is known about the relationships between Mediterranean macrophyte communities and their remains. The aim of our study is to assess how contemporary aquatic macrophyte communities are represented by their sedimentary remains in terms of composition, distribution and concordance between the contemporary and the subfossil assemblages in a procrustean superimposition space, and to determine which surface sediment cores, collected along a depth gradient, may represent best the whole-lake macrofossil assemblage. These analyses were carried out for both species and macrophyte growth forms (submerged hydrophytes, floating-leaved hydrophytes, helophytes and charophytes) in order to check which of the two (species and growth forms) were represented best by their macro-remains. The most abundant present-day species (Myriophyllum alterniflorum DC. and Potamogeton trichoides L.) were under-represented while Characeae and some floating-leaved hydrophytes (Polygonum amphibium L. and Ranunculus peltatus Schrank) were over-represented in sedimentary samples. Additionally, macro-remains of submerged hydrophytes and helophytes were generally found in the central areas and in close proximity to contemporary vegetation, whereas floating-leaved hydrophytes distributed close to the near-shore. Notwithstanding some disparities between contemporary vegetation and their macrofossil assemblages, we found a good agreement between present-day and sedimentary datasets for both species and macrophyte growth forms. Furthermore, our study suggests that sediment cores from deep areas are more likely to represent best the whole-lake macrofossil assemblage because of their high diversity, equitability and heterogeneity. We conclude that aquatic macrophyte subfossils from the central areas of the basin can be a very useful tool in tracking the species composition and structure of the original macrophyte communities in shallow Mediterranean lakes. Additionally, when considering the use of macro-remains to reconstruct the composition and structure of macrophyte growth forms, we recommend a multicore approach that uses transects running from the shore to the lake center.

Journal

Journal of PaleolimnologySpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off