Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine

Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine ClpB/Hsp100 proteins act as chaperones, mediating disaggregation of denatured proteins. Recent work shows that apart from cytoplasm, these proteins are localized to nuclei, chloroplasts, mitochondria and plasma membrane. While ClpB/Hsp100 genes are essentially stress-induced (mainly heat stress) in vegetative organs of the plant body, expression of ClpB/Hsp100 proteins is noted to be constitutive in plant reproductive structures like pollen grains, developing embryos, seeds etc. With global warming looming large on the horizon, ways to genetically engineer plants against high temperature stress are urgently needed. Yeast mutants unable to synthesize active ClpB/Hsp100 protein show a clear thermosensitive phenotype. ClpB/Hsp100 proteins are implicated in high temperature stress tolerance in plants. We herein highlight the selected important facets of this protein family in plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine

Loading next page...
 
/lp/springer_journal/plant-hsp100-clpb-like-proteins-poorly-analyzed-cousins-of-yeast-clpb-jMnfcVG5sP
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9682-8
Publisher site
See Article on Publisher Site

Abstract

ClpB/Hsp100 proteins act as chaperones, mediating disaggregation of denatured proteins. Recent work shows that apart from cytoplasm, these proteins are localized to nuclei, chloroplasts, mitochondria and plasma membrane. While ClpB/Hsp100 genes are essentially stress-induced (mainly heat stress) in vegetative organs of the plant body, expression of ClpB/Hsp100 proteins is noted to be constitutive in plant reproductive structures like pollen grains, developing embryos, seeds etc. With global warming looming large on the horizon, ways to genetically engineer plants against high temperature stress are urgently needed. Yeast mutants unable to synthesize active ClpB/Hsp100 protein show a clear thermosensitive phenotype. ClpB/Hsp100 proteins are implicated in high temperature stress tolerance in plants. We herein highlight the selected important facets of this protein family in plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 2, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off