Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris

Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris Microalgae are photosynthetic organisms with the ability to produce a variety of high-value compounds such as polyunsaturated fatty acids (PUFAs), proteins, pigments, and lipids. The high cost of microalgae production is one of the biggest obstacles for their commercialization. Plant growth regulators might be an ideal choice since they could potentially induce microalgae to produce lipids and other high-value secondary metabolites thereby reducing production cost. This study investigated the effects of eight plant growth regulators (PGRs), namely, salicylic acid (SA); 1-naphthaleneacetic acid (NAA); gibberellin (GA3); 6-benzylaminopurine (6-BA); 2,4-epibrassinolide (EBR); abscisic acid (ABA); ethephon (ETH); and spermidine (SPD) on the induction of lipids, proteins, carotenoids, and unsaturated fatty acids (UFAs) in Chlorella vulgaris. Moreover, the expression profiles of seven fatty acid biosynthethis genes were studied in the PGR-treated biomass. All PGRs used in the study caused significant increases in total lipid contents in non-dose-dependent manners when compared to control. However, lipid productivities were increased due to four of the eight PGRs (ABA, 6-BA, NAA, and ETH). Similar to lipids, total carotenoid contents were significantly higher in all of the PGR-treated microalgal biomass except ABA. However, soluble protein contents were not affected by the PGR treatments except SA at 10 mg L−1. Furthermore, 6-BA, NAA, ABA, and ETH treatments resulted in significant increases in UFAs especially DHA, linolenic acid, arachidonic acid, and EPA which were confirmed by the upregulation of fatty acid biosynthesis genes including stearoyl-ACP-desaturase, ω-3 fatty acid desaturase, biotin carboxylase, and acyl-acyl carrier protein. Our findings, therefore, indicate that the treatment with PGR used in this study could be a useful tool to produce biodiesel and other high-value metabolites from microalgal biomass. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Phycology Springer Journals

Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris

Loading next page...
 
/lp/springer_journal/plant-growth-regulators-promote-lipid-and-carotenoid-accumulation-in-LBF47gjD5H
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Plant Sciences; Freshwater & Marine Ecology; Plant Physiology; Ecology
ISSN
0921-8971
eISSN
1573-5176
D.O.I.
10.1007/s10811-017-1350-9
Publisher site
See Article on Publisher Site

Abstract

Microalgae are photosynthetic organisms with the ability to produce a variety of high-value compounds such as polyunsaturated fatty acids (PUFAs), proteins, pigments, and lipids. The high cost of microalgae production is one of the biggest obstacles for their commercialization. Plant growth regulators might be an ideal choice since they could potentially induce microalgae to produce lipids and other high-value secondary metabolites thereby reducing production cost. This study investigated the effects of eight plant growth regulators (PGRs), namely, salicylic acid (SA); 1-naphthaleneacetic acid (NAA); gibberellin (GA3); 6-benzylaminopurine (6-BA); 2,4-epibrassinolide (EBR); abscisic acid (ABA); ethephon (ETH); and spermidine (SPD) on the induction of lipids, proteins, carotenoids, and unsaturated fatty acids (UFAs) in Chlorella vulgaris. Moreover, the expression profiles of seven fatty acid biosynthethis genes were studied in the PGR-treated biomass. All PGRs used in the study caused significant increases in total lipid contents in non-dose-dependent manners when compared to control. However, lipid productivities were increased due to four of the eight PGRs (ABA, 6-BA, NAA, and ETH). Similar to lipids, total carotenoid contents were significantly higher in all of the PGR-treated microalgal biomass except ABA. However, soluble protein contents were not affected by the PGR treatments except SA at 10 mg L−1. Furthermore, 6-BA, NAA, ABA, and ETH treatments resulted in significant increases in UFAs especially DHA, linolenic acid, arachidonic acid, and EPA which were confirmed by the upregulation of fatty acid biosynthesis genes including stearoyl-ACP-desaturase, ω-3 fatty acid desaturase, biotin carboxylase, and acyl-acyl carrier protein. Our findings, therefore, indicate that the treatment with PGR used in this study could be a useful tool to produce biodiesel and other high-value metabolites from microalgal biomass.

Journal

Journal of Applied PhycologySpringer Journals

Published: Dec 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off