Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points

Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature... Crop canopy spatial parameters are indicative of plant phenological growth stage and physiological condition, and their estimation is therefore of great interest for modeling and precision agriculture practices. Rapid increases in computing power have made stereovision models an attractive alternative to common single-image-based 2D methods, by allowing detailed estimation of the plant’s growth parameters regardless of imaging conditions. Models that have been proposed thus far are still limited in their application because of sensitivity to outdoor illumination conditions and the inherent difficulty in modeling complex plant shapes using only radiometric information. Assuming that not all of the plant-related pixels are essential for growth estimation, this study proposes a 3D reconstruction model that focuses on selected salient features on the plant surface, which are sufficient for obtaining growth characteristics. In addition, by introducing a hue-invariant model, the proposed algorithm shows robustness to diverse outdoor illumination conditions. The algorithm was tested under greenhouse and field conditions on corn, cotton, sunflower, tomato and black nightshade plants, from young seedlings to fully developed plant growth stages, and accurately estimated height (error ~4.5 %) and leaf cover area (error ~5 %). Furthermore, a strong correlation (r2 ~0.92) was found between the plant’s estimated volume and measured biomass, yielding an accurate biomass estimator in the validation tests (error ~4.5 %). This estimation ability remained stable while applying the model on plants with varying densities (overlapping leaves) and imaging setups where the standard 2D based analyses failed, thus showing the 3D modeling contribution to robust growth estimation models. Precision Agriculture Springer Journals

Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points

Loading next page...
Springer US
Copyright © 2013 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial