Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP

Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP Plant heat shock transcription factors (HSFs) are capable of transcriptional activation (class A HSFs) or both, activation and repression (class B HSFs). However, the details of mechanism still remain unclear. It is likely, that the regulation occurs through interactions of HSFs with general transcription factors (GTFs), as has been described for numerous other transcription factors. Here, we show that class A HSFs may activate transcription through direct contacts with TATA-binding protein (TBP). Class A HSFs can also interact weakly with TFIIB. Conversely, class B HSFs inhibit promoter activity through an active mechanism of repression that involves the C-terminal regulatory region (CTR) of class B HSFs. Deletion analysis revealed two sites in the CTR of soybean GmHSFB1 potentially involved in protein–protein interactions with GTFs: one is the repressor domain (RD) located in the N-terminal half of the CTR, and the other is a TFIIB binding domain (BD) that shows affinity for TFIIB and is located C-terminally from the RD. A Gal4 DNA binding domain-RD fusion repressed activity of LexA-activators, while Gal4-BD proteins synergistically activated strong and weak transcriptional activators. In vitrobinding studies were consistent with this pattern of activity since the BD region alone interacted strongly with TFIIB, and the presence of RD had an inhibitory effect on TFIIB binding and transcriptional activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP

Loading next page...
 
/lp/springer_journal/plant-class-b-hsfs-inhibit-transcription-and-exhibit-affinity-for-7yTjom0WHK
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-2307-3
Publisher site
See Article on Publisher Site

Abstract

Plant heat shock transcription factors (HSFs) are capable of transcriptional activation (class A HSFs) or both, activation and repression (class B HSFs). However, the details of mechanism still remain unclear. It is likely, that the regulation occurs through interactions of HSFs with general transcription factors (GTFs), as has been described for numerous other transcription factors. Here, we show that class A HSFs may activate transcription through direct contacts with TATA-binding protein (TBP). Class A HSFs can also interact weakly with TFIIB. Conversely, class B HSFs inhibit promoter activity through an active mechanism of repression that involves the C-terminal regulatory region (CTR) of class B HSFs. Deletion analysis revealed two sites in the CTR of soybean GmHSFB1 potentially involved in protein–protein interactions with GTFs: one is the repressor domain (RD) located in the N-terminal half of the CTR, and the other is a TFIIB binding domain (BD) that shows affinity for TFIIB and is located C-terminally from the RD. A Gal4 DNA binding domain-RD fusion repressed activity of LexA-activators, while Gal4-BD proteins synergistically activated strong and weak transcriptional activators. In vitrobinding studies were consistent with this pattern of activity since the BD region alone interacted strongly with TFIIB, and the presence of RD had an inhibitory effect on TFIIB binding and transcriptional activation.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off