Plant Cell Wall Is a Stumbling Stone for Molecular Biologists

Plant Cell Wall Is a Stumbling Stone for Molecular Biologists Cell wall is a key structure of the plant organism engaged in numerous functions, and plants spend enormous resources on cell wall formation. Cell wall components are the most widespread organic substances on the Earth. However important is assembling plant cell wall polysaccharides, this process has been insufficiently studied by the methods of molecular genetics; in particular, too little is known of the genes that code for the relevant enzymes (glycosyltransferases, GT). The review addresses the current situation by expounding on GT classification, describing the characteristics of enzymes that synthesize cell wall polysaccharides, and summing up the existing knowledge of already identified and putative cellulose and callose synthases and GT localized in the Golgi apparatus. The methodology for searching and characterizing new genes that participate in cell wall formation is under discussion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Plant Cell Wall Is a Stumbling Stone for Molecular Biologists

Loading next page...
 
/lp/springer_journal/plant-cell-wall-is-a-stumbling-stone-for-molecular-biologists-JzSUkzxY3f
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0059-9
Publisher site
See Article on Publisher Site

Abstract

Cell wall is a key structure of the plant organism engaged in numerous functions, and plants spend enormous resources on cell wall formation. Cell wall components are the most widespread organic substances on the Earth. However important is assembling plant cell wall polysaccharides, this process has been insufficiently studied by the methods of molecular genetics; in particular, too little is known of the genes that code for the relevant enzymes (glycosyltransferases, GT). The review addresses the current situation by expounding on GT classification, describing the characteristics of enzymes that synthesize cell wall polysaccharides, and summing up the existing knowledge of already identified and putative cellulose and callose synthases and GT localized in the Golgi apparatus. The methodology for searching and characterizing new genes that participate in cell wall formation is under discussion.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 19, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off