Plant aquaporins with non-aqua functions: deciphering the signature sequences

Plant aquaporins with non-aqua functions: deciphering the signature sequences Research in recent years on plant Major Intrinsic Proteins (MIPs), commonly referred to as ‘aquaporins’, has seen a vast expansion in the substrates found to be transported via these membrane channels. The diversity in sizes, chemical nature and physiological significance of these substrates has meant a need to critically analyse the possible structural and biochemical properties of MIPs that transport these, in order to understand their roles. In this work we have undertaken a comprehensive analysis of all plant MIPs, coming from different families, that have been proven to transport ammonia, boron, carbon dioxide, hydrogen peroxide, silicon and urea. The sequences were analysed for all primary selectivity-related motifs (NPA motifs, ar/R filter, P1–P5 residues). In addition, the putative regulatory phosphorylation and glycosylation sites and mechanistic regulators such as loop lengths have been analysed. Further, nine specificity-determining positions (SDPs) were predicted for each group. The results show the ar/R filter residues, P2–P4 positions and some of the SDPs are characteristic for certain groups, and O-glycosylation sites are unique to a subgroup while N-glycosylation was characteristic of the other MIPs. Certain residues, especially in loop C, and structural parameters such as loop lengths also contribute to the uniqueness of groups. The comprehensive analysis makes significant inroads into appraising the intriguing diversity of plant MIPs and their roles in fundamental life processes, and provides tools for plant selections, protein engineering and transgenics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Plant aquaporins with non-aqua functions: deciphering the signature sequences

Loading next page...
 
/lp/springer_journal/plant-aquaporins-with-non-aqua-functions-deciphering-the-signature-Baqt1lzEld
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9737-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial