Access the full text.
Sign up today, get DeepDyve free for 14 days.
A leader-follower relationship in multiple layers of decision makers under uncertainties is a critical challenge associated with water resources security (WRS). To address this problem, a credibility-based chance-constrained hierarchical programming model with WRS assessment is developed for regional water system sustainability planning. This model can deal with the sequential decision-making problem with different goals and preferences, and reflect uncertainties presented as fuzzy sets. The effectiveness of the developed model is demonstrated through a real-world water resources management system in Beijing, China. A leader-follower interactive solution algorithm based on satisfactory degree is utilized to improve computational efficiency. Results show the that: (a) surface water, groundwater, recycled water, and off water would account for 27.01, 27.44, 23.11, and 22.44% of the total water supplies, respectively; (b) the entire pollutant emissions and economic benefits would consequently decrease by 31.53 and 22.88% when the statue changes from quite safe to extremely far from safe; and (c) a high credibility level would correspond to low risks of insufficient water supply and overloaded pollutant emissions, which lowers economic benefits and pollutant emissions. By contrast, a low credibility level would decrease the limitations of constraints, which leads to high economic benefits and pollutant emissions, but system risk would be increased. These findings can aid different decision makers in identifying the desired strategies for regional water resources management under multiple uncertainties, and support the in-depth analysis of the interrelationships among water security, system efficiency, and credibility level.
Water Resources Management – Springer Journals
Published: Apr 12, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.