Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows

Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent... A simultaneous planar Rayleigh scattering and planar laser-induced fluorescence (PLIF) technique is described which allows planar measurement of the full three-dimensional scalar gradient, ∇C (x, t), and scalar energy dissipation rate, χ≡D ∇C·∇C, in gas-phase turbulent flows. The conserved scalar used is the jet fluid concentration, where the jet consists of propane and seeded acetone. The propane serves as the primary Rayleigh scattering medium, while the acetone is used for fluorescence. For a given amount of available laser energy, this planar Rayleigh scattering/PLIF technique yields much higher signals levels than would, for example, a two-plane Rayleigh scattering technique. By applying the current technique to a single spatial plane, the errors incurred in measuring a spatial derivative across distinct planes are quantified. The errors are found to be well described by a random distribution, and the magnitude of these errors is found to be smaller than the magnitude of significant events in the true scalar gradient fields. Sample results for the fields of the three-dimensional scalar gradient and scalar energy dissipation in a planar turbulent jet, with outer scale Reynolds numbers between 3200 and 8400, are shown, demonstrating the applicability of these measurements to analyses of the fine scale mixing in turbulent flows. The application of these measurements to determination of the scaling properties of the dissipation rate is also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows

Loading next page...
 
/lp/springer_journal/planar-measurements-of-the-full-three-dimensional-scalar-dissipation-4CMIf4yqBl
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050375
Publisher site
See Article on Publisher Site

Abstract

A simultaneous planar Rayleigh scattering and planar laser-induced fluorescence (PLIF) technique is described which allows planar measurement of the full three-dimensional scalar gradient, ∇C (x, t), and scalar energy dissipation rate, χ≡D ∇C·∇C, in gas-phase turbulent flows. The conserved scalar used is the jet fluid concentration, where the jet consists of propane and seeded acetone. The propane serves as the primary Rayleigh scattering medium, while the acetone is used for fluorescence. For a given amount of available laser energy, this planar Rayleigh scattering/PLIF technique yields much higher signals levels than would, for example, a two-plane Rayleigh scattering technique. By applying the current technique to a single spatial plane, the errors incurred in measuring a spatial derivative across distinct planes are quantified. The errors are found to be well described by a random distribution, and the magnitude of these errors is found to be smaller than the magnitude of significant events in the true scalar gradient fields. Sample results for the fields of the three-dimensional scalar gradient and scalar energy dissipation in a planar turbulent jet, with outer scale Reynolds numbers between 3200 and 8400, are shown, demonstrating the applicability of these measurements to analyses of the fine scale mixing in turbulent flows. The application of these measurements to determination of the scaling properties of the dissipation rate is also discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 4, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off