Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Placental overgrowth and fertility defects in mice with a hypermorphic allele of epidermal growth factor receptor

Placental overgrowth and fertility defects in mice with a hypermorphic allele of epidermal growth... Epidermal growth factor receptor (EGFR) is a member of the ERBB family of receptor tyrosine kinases that has been shown to play an important developmental and physiologic role in many aspects of pregnancy. We have previously shown in mice that Egfr tm1Mag nullizygous placentas have fewer proliferative trophoblasts than wild-type and exhibit strain-specific defects in the spongiotrophoblast and labyrinth layers. In this study we used mice with the hypermorphic Egfr Dsk5 allele to study the effects of increased levels of EGFR signaling on placental development. On three genetic backgrounds, heterozygosity for Egfr Dsk5 resulted in larger placental size with a more prominent spongiotrophoblast layer and increased expression of glycogen cell-specific genes. The C3HeB/FeJ strain showed additional placental enlargement of Egfr Dsk5 homozygotes with a significant number of homozygous embryos dying prior to 15.5 days post-coitus (dpc). We also observed strain-specific subfertility in Egfr Dsk5 heterozygous females and pregnancy loss was dependent on maternal factors rather than embryo genotype. Higher levels of phospho-EGFR were detected in the uterus of Egfr Dsk5 heterozygotes but the structure of Egfr Dsk5 heterozygous nonpregnant uteri appeared similar to wild-type. Collectively, our results demonstrate that mice with increased levels of EGFR signaling exhibit an extensive level of genetic background-dependent phenotypic variability. In addition, EGFR promotes growth of the placental spongiotrophoblast layer in mice, and EGFR expressed in the uterine stroma may play an underappreciated role in preparation of the uterus for embryo implantation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Placental overgrowth and fertility defects in mice with a hypermorphic allele of epidermal growth factor receptor

Mammalian Genome , Volume 20 (6) – May 23, 2009

Loading next page...
 
/lp/springer_journal/placental-overgrowth-and-fertility-defects-in-mice-with-a-hypermorphic-IJw0E138JB

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
DOI
10.1007/s00335-009-9189-2
pmid
19466482
Publisher site
See Article on Publisher Site

Abstract

Epidermal growth factor receptor (EGFR) is a member of the ERBB family of receptor tyrosine kinases that has been shown to play an important developmental and physiologic role in many aspects of pregnancy. We have previously shown in mice that Egfr tm1Mag nullizygous placentas have fewer proliferative trophoblasts than wild-type and exhibit strain-specific defects in the spongiotrophoblast and labyrinth layers. In this study we used mice with the hypermorphic Egfr Dsk5 allele to study the effects of increased levels of EGFR signaling on placental development. On three genetic backgrounds, heterozygosity for Egfr Dsk5 resulted in larger placental size with a more prominent spongiotrophoblast layer and increased expression of glycogen cell-specific genes. The C3HeB/FeJ strain showed additional placental enlargement of Egfr Dsk5 homozygotes with a significant number of homozygous embryos dying prior to 15.5 days post-coitus (dpc). We also observed strain-specific subfertility in Egfr Dsk5 heterozygous females and pregnancy loss was dependent on maternal factors rather than embryo genotype. Higher levels of phospho-EGFR were detected in the uterus of Egfr Dsk5 heterozygotes but the structure of Egfr Dsk5 heterozygous nonpregnant uteri appeared similar to wild-type. Collectively, our results demonstrate that mice with increased levels of EGFR signaling exhibit an extensive level of genetic background-dependent phenotypic variability. In addition, EGFR promotes growth of the placental spongiotrophoblast layer in mice, and EGFR expressed in the uterine stroma may play an underappreciated role in preparation of the uterus for embryo implantation.

Journal

Mammalian GenomeSpringer Journals

Published: May 23, 2009

There are no references for this article.