PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection

PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection The flow around an oscillating NACA 0015 airfoil with prescheduled trailing-edge flap motion control was investigated by using particle image velocimetry (PIV). Aerodynamic load coefficients, obtained via surface pressure measurements, were also acquired to supplement the PIV results. The results demonstrate that upward flap deflections led to an improved negative peak pitching moment coefficient C m,peak, mainly as a consequence of the increased suction pressure on the lower surface of the flap. The behavior of the leading-edge vortex (LEV) was largely unaffected. Its strength was, however, reduced slightly compared to that of the uncontrolled airfoil. No trailing-edge vortex was observed. For downward flap deflection, the strength of the LEV was found to be slightly increased. A favorable increase in C l,max, as a consequence of downward flap-induced positive camber effects, accompanied by a detrimental increase in the nose-down C m,peak, due to the large pressure increase on the lower surface of the flap, was also observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection

Loading next page...
 
/lp/springer_journal/piv-study-of-flow-around-unsteady-airfoil-with-dynamic-trailing-edge-HnTXA9mLi7
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0514-4
Publisher site
See Article on Publisher Site

Abstract

The flow around an oscillating NACA 0015 airfoil with prescheduled trailing-edge flap motion control was investigated by using particle image velocimetry (PIV). Aerodynamic load coefficients, obtained via surface pressure measurements, were also acquired to supplement the PIV results. The results demonstrate that upward flap deflections led to an improved negative peak pitching moment coefficient C m,peak, mainly as a consequence of the increased suction pressure on the lower surface of the flap. The behavior of the leading-edge vortex (LEV) was largely unaffected. Its strength was, however, reduced slightly compared to that of the uncontrolled airfoil. No trailing-edge vortex was observed. For downward flap deflection, the strength of the LEV was found to be slightly increased. A favorable increase in C l,max, as a consequence of downward flap-induced positive camber effects, accompanied by a detrimental increase in the nose-down C m,peak, due to the large pressure increase on the lower surface of the flap, was also observed.

Journal

Experiments in FluidsSpringer Journals

Published: May 24, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off