PIV/PLIF investigation of two-phase vortex–flame interactions: effects of vortex size and strength

PIV/PLIF investigation of two-phase vortex–flame interactions: effects of vortex size and strength The evolution of flame surface area and rate of CH layer extinction are measured during the interaction of a two-phase counterflow diffusion flame with fuel-side vortices of varying size and strength. Planar laser-induced fluorescence (PLIF) of CH is used to mark the flame front and particle-image velocimetry (PIV) is used to measure the strain rate field at various phases of the interaction process. Vortices of similar initial circulation but differing in size showed widely disparate peak strain rates and CH decay rates because of varying levels of flame-induced vortex dissipation. Vortex size is also found to have a significant effect on flame surface area evolution during and after extinction, with the presence of droplets playing a significant role in the latter. Implications of these results for the fundamental understanding of vortex–flame interactions are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

PIV/PLIF investigation of two-phase vortex–flame interactions: effects of vortex size and strength

Loading next page...
 
/lp/springer_journal/piv-plif-investigation-of-two-phase-vortex-flame-interactions-effects-HlyxsM1g1t
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0608-y
Publisher site
See Article on Publisher Site

Abstract

The evolution of flame surface area and rate of CH layer extinction are measured during the interaction of a two-phase counterflow diffusion flame with fuel-side vortices of varying size and strength. Planar laser-induced fluorescence (PLIF) of CH is used to mark the flame front and particle-image velocimetry (PIV) is used to measure the strain rate field at various phases of the interaction process. Vortices of similar initial circulation but differing in size showed widely disparate peak strain rates and CH decay rates because of varying levels of flame-induced vortex dissipation. Vortex size is also found to have a significant effect on flame surface area evolution during and after extinction, with the presence of droplets playing a significant role in the latter. Implications of these results for the fundamental understanding of vortex–flame interactions are discussed.

Journal

Experiments in FluidsSpringer Journals

Published: May 9, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off