PIV measurements of flow in drying polymer solutions during solvent casting

PIV measurements of flow in drying polymer solutions during solvent casting An experimental method based on confocal microscopy and particle image velocimetry (PIV) is used to characterize the flow in a polymer solution during solvent casting. The flow inside a 200-μm-thick film of a poly(vinyl alcohol) (PVA) solution is visualized near a vertical wall of a mold using confocal microscopy of seed particles during solvent evaporation at 25, 35, and 45°C, and the corresponding velocity vector fields are determined from projections of the confocal images. Flow toward the vertical wall is observed inside the film as well as a slower Marangoni-type counter flow at the film surface during the initial phase of solvent evaporation, resulting from a polymer concentration gradient along the film due to a local variation in evaporation rate. Total volume of the polymer solution in the observation volume as well as solvent evaporation rate are determined as a function of time, both revealing close correlation to average horizontal velocity data from PIV. The PIV measurements show significant differences in the flow velocity fields at different temperatures. The PIV measurements correlate with the solvent evaporation rates as well as the final polymer thicknesses on the vertical wall of the mold. Surface tension and viscosity measurements are taken for different concentrations of PVA solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

PIV measurements of flow in drying polymer solutions during solvent casting

Loading next page...
 
/lp/springer_journal/piv-measurements-of-flow-in-drying-polymer-solutions-during-solvent-mCfSJ74gxM
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-1000-3
Publisher site
See Article on Publisher Site

Abstract

An experimental method based on confocal microscopy and particle image velocimetry (PIV) is used to characterize the flow in a polymer solution during solvent casting. The flow inside a 200-μm-thick film of a poly(vinyl alcohol) (PVA) solution is visualized near a vertical wall of a mold using confocal microscopy of seed particles during solvent evaporation at 25, 35, and 45°C, and the corresponding velocity vector fields are determined from projections of the confocal images. Flow toward the vertical wall is observed inside the film as well as a slower Marangoni-type counter flow at the film surface during the initial phase of solvent evaporation, resulting from a polymer concentration gradient along the film due to a local variation in evaporation rate. Total volume of the polymer solution in the observation volume as well as solvent evaporation rate are determined as a function of time, both revealing close correlation to average horizontal velocity data from PIV. The PIV measurements show significant differences in the flow velocity fields at different temperatures. The PIV measurements correlate with the solvent evaporation rates as well as the final polymer thicknesses on the vertical wall of the mold. Surface tension and viscosity measurements are taken for different concentrations of PVA solution.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 13, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off