PIV measurements of flow in and around scour holes

PIV measurements of flow in and around scour holes Two sets of experiments related to the scour of cohesionless sediment by planar turbulent jets are presented and discussed. The first set of experiments measures the growth of the scour hole and downstream dune as a function of time. Measurements reveal a bedform that is nearly self-similar and whose growth in time is governed by a power-law relationship. The bedform is well represented by three linear segments with slopes near the angle of repose of the sediment. The second set of experiments uses Particle Image Velocimetry to characterize the mean velocity field in the scour hole and above the dune. For this set of experiments, a series of successively larger roughened fixed-bed models was used in place of the mobile bed. The measurements reveal the presence of strong recirculation in the hole and an attached wall jet on the main slope. Discussion of the utility of the present fixed-bed measurements in estimating shear stress along the bed and related application to predictive modeling of hydraulic scour is provided. Discussion of the technical challenges of similar mobile-bed measurements is also given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

PIV measurements of flow in and around scour holes

Loading next page...
 
/lp/springer_journal/piv-measurements-of-flow-in-and-around-scour-holes-ZfeeqlSHKQ
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0156-3
Publisher site
See Article on Publisher Site

Abstract

Two sets of experiments related to the scour of cohesionless sediment by planar turbulent jets are presented and discussed. The first set of experiments measures the growth of the scour hole and downstream dune as a function of time. Measurements reveal a bedform that is nearly self-similar and whose growth in time is governed by a power-law relationship. The bedform is well represented by three linear segments with slopes near the angle of repose of the sediment. The second set of experiments uses Particle Image Velocimetry to characterize the mean velocity field in the scour hole and above the dune. For this set of experiments, a series of successively larger roughened fixed-bed models was used in place of the mobile bed. The measurements reveal the presence of strong recirculation in the hole and an attached wall jet on the main slope. Discussion of the utility of the present fixed-bed measurements in estimating shear stress along the bed and related application to predictive modeling of hydraulic scour is provided. Discussion of the technical challenges of similar mobile-bed measurements is also given.

Journal

Experiments in FluidsSpringer Journals

Published: May 19, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off