PIV investigation of flowfield behind perforated Gurney-type flaps

PIV investigation of flowfield behind perforated Gurney-type flaps The flow behind perforated Gurney-type flaps was investigated by using particle image velocimetry (PIV) at Re = 5.3 × 104. The PIV measurements were supplemented by force balance and surface pressure data. The near wake was disrupted and narrowed, indicative of a reduced drag, with increasing flap perforation and had a drastically suppressed fluctuating intensity. Depending on the strength of the perforation-generated jet, the vortex shedding process behind the flap could be eliminated. The flap porosity also led to reduced positive camber effects and the decompression of the cavity flow (upstream of the flap), as well as decreased upper and lower surface pressures, compared to the solid flap. The reduction in the drag, however, outweighed the loss in lift and rendered an improved lift-to-drag ratio. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

PIV investigation of flowfield behind perforated Gurney-type flaps

Loading next page...
 
/lp/springer_journal/piv-investigation-of-flowfield-behind-perforated-gurney-type-flaps-FOlYTpKzRb
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0606-1
Publisher site
See Article on Publisher Site

Abstract

The flow behind perforated Gurney-type flaps was investigated by using particle image velocimetry (PIV) at Re = 5.3 × 104. The PIV measurements were supplemented by force balance and surface pressure data. The near wake was disrupted and narrowed, indicative of a reduced drag, with increasing flap perforation and had a drastically suppressed fluctuating intensity. Depending on the strength of the perforation-generated jet, the vortex shedding process behind the flap could be eliminated. The flap porosity also led to reduced positive camber effects and the decompression of the cavity flow (upstream of the flap), as well as decreased upper and lower surface pressures, compared to the solid flap. The reduction in the drag, however, outweighed the loss in lift and rendered an improved lift-to-drag ratio.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 25, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off