PIV analysis of merging flow in a simplified model of a rotary kiln

PIV analysis of merging flow in a simplified model of a rotary kiln Rotary kilns are used in a variety of industrial applications. The focus in this work is on characterizing the non-reacting, isothermal flow field in a rotary kiln used for iron ore pelletization. A downscaled, simplified model of the kiln is experimentally investigated using particle image velocimetry. Five different momentum flux ratios of the two inlet ducts to the kiln are investigated in order to evaluate its effect on the flow field in general and the recirculation zone in particular. Time-averaged and phase-averaged analyses are reported, and it is found that the flow field resembles that of two parallel merging jets, with the same characteristic flow zones. The back plate separating the inlet ducts acts as a bluff body to the flow and creates a region of reversed flow behind it. Due to the semicircular cross-section of the jets, the wake is elongated along the walls. Conclusions are that the flow field shows a dependence on momentum flux ratio of the jets; as the momentum flux ratio approaches unity, there is an increasing presence of von Kármán-type coherent structures with a Strouhal number of between 0.16 and 0.18. These large-scale structures enhance the mixing of the jets and also affect the size of the recirculation zone. It is also shown that the inclination of the upper inlet duct leads to a decrease in length of the recirculation zone in certain cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

PIV analysis of merging flow in a simplified model of a rotary kiln

Loading next page...
 
/lp/springer_journal/piv-analysis-of-merging-flow-in-a-simplified-model-of-a-rotary-kiln-mFmrtwAUCV
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1309-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial