Pigment apparatus in Ajuga reptans plants as affected by adaptation to light growth conditions

Pigment apparatus in Ajuga reptans plants as affected by adaptation to light growth conditions Mechanisms of adaptation of the photosynthetic apparatus at the level of pigment complex in a shade-tolerant bugle plant (Ajuga reptans L.) grown at full solar irradiation in an open plot were studied. In “sun” plants, the content of photosynthetic pigments decreased markedly as compared to “shade” plants grown under a forest canopy at 5–10% of the full solar irradiation. In leaves of sun plants, the portion of β-carotene and lutein in the carotenoid spectrum was higher than in shade plant leaves, antheraxanthin and zeaxanthin were present, and de-epoxidation of violaxanthin was by an order of magnitude higher in sun plant leaves reaching 40%. The data obtained indicate the role of the violaxanthin cycle in the protection of photosynthetic apparatus in a shade-tolerant plant against destruction under excessive irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Pigment apparatus in Ajuga reptans plants as affected by adaptation to light growth conditions

Loading next page...
 
/lp/springer_journal/pigment-apparatus-in-ajuga-reptans-plants-as-affected-by-adaptation-to-ECImY0Dteq
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443707010062
Publisher site
See Article on Publisher Site

Abstract

Mechanisms of adaptation of the photosynthetic apparatus at the level of pigment complex in a shade-tolerant bugle plant (Ajuga reptans L.) grown at full solar irradiation in an open plot were studied. In “sun” plants, the content of photosynthetic pigments decreased markedly as compared to “shade” plants grown under a forest canopy at 5–10% of the full solar irradiation. In leaves of sun plants, the portion of β-carotene and lutein in the carotenoid spectrum was higher than in shade plant leaves, antheraxanthin and zeaxanthin were present, and de-epoxidation of violaxanthin was by an order of magnitude higher in sun plant leaves reaching 40%. The data obtained indicate the role of the violaxanthin cycle in the protection of photosynthetic apparatus in a shade-tolerant plant against destruction under excessive irradiation.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 6, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off