Pico- and nano-second laser flash photolysis study on photoinduced charge separation in oligothiophene-C60 dyad molecules

Pico- and nano-second laser flash photolysis study on photoinduced charge separation in... Photoinduced charge separation (CS) and charge recombination (CR) processes of octathiophene-C60 and dodecathiophene-C60 dyad molecules (8T-C60 and 12T-C60, respectively) have been investigated by time-resolved absorption spectroscopy in the visible and near-IR regions. In toluene, 18T*-C60 and 112T*-C60 showed energy transfer to 1C*-moiety predominantly, while 60 contribution of CS was small. In various polar solvents, on the other hand, CS states were predominantly formed from both singlet-excited oligothiophene and 1C6*0-moiety because of lower CS level in polar environments. The CR process generating both the triplet state of oligothiophene and the ground state was confirmed in anisole and anisole/toluene mixture within a few nanoseconds. In more polar solvents (dielectric constant (∈s) > 7), CS states showed two components decay: Slow decay component showed lifetime in the hundred nanosecond-region, while fast component decayed within a few nanoseconds. For the mechanism of the long-living CS state in polar solvents (∈s > 7), equilibrium between the CS state and the triplet state was proposed. Furthermore, effects of length of oligothiophene on the CS and CR processes were discussed on the basis of the free energy changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Pico- and nano-second laser flash photolysis study on photoinduced charge separation in oligothiophene-C60 dyad molecules

Loading next page...
 
/lp/springer_journal/pico-and-nano-second-laser-flash-photolysis-study-on-photoinduced-4DnHZ0yqr9
Publisher
Springer Journals
Copyright
Copyright © 2001 by VSP 2001
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856701745140
Publisher site
See Article on Publisher Site

Abstract

Photoinduced charge separation (CS) and charge recombination (CR) processes of octathiophene-C60 and dodecathiophene-C60 dyad molecules (8T-C60 and 12T-C60, respectively) have been investigated by time-resolved absorption spectroscopy in the visible and near-IR regions. In toluene, 18T*-C60 and 112T*-C60 showed energy transfer to 1C*-moiety predominantly, while 60 contribution of CS was small. In various polar solvents, on the other hand, CS states were predominantly formed from both singlet-excited oligothiophene and 1C6*0-moiety because of lower CS level in polar environments. The CR process generating both the triplet state of oligothiophene and the ground state was confirmed in anisole and anisole/toluene mixture within a few nanoseconds. In more polar solvents (dielectric constant (∈s) > 7), CS states showed two components decay: Slow decay component showed lifetime in the hundred nanosecond-region, while fast component decayed within a few nanoseconds. For the mechanism of the long-living CS state in polar solvents (∈s > 7), equilibrium between the CS state and the triplet state was proposed. Furthermore, effects of length of oligothiophene on the CS and CR processes were discussed on the basis of the free energy changes.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off