Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit

Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in... The characteristic yellow fruit phenotype of the r,r mutant and Psy-1 (phytoene synthase-1) antisense tomatoes is due to a mutated or down-regulated phytoene synthase protein, respectively, resulting in the virtual absence of carotenoids. Based on detailed carotenoid determinations Psy-1 appeared to barely contribute to the formation of carotenoids in chloroplast-containing tissues. Despite the virtual absence of carotenoids in ripe fruit the formation of phytoene in vitro was detected in fruit of both mutants. When [14C]isopentenyl pyrophosphate (IPP) was used as the substrate for phytoene synthase a reduction (e.g. r,r mutant, 5-fold) in the formation of phytoene was observed with an accumulation (e.g. r,r mutant, 2-fold) of the immediate precursor geranylgeranyl pyrophosphate (GGPP). Contrastingly, reduced phytoene synthase activity was not detected when [3H]GGPP was used as the substrate. The profile of phytoene formation during ripening was also different in the down-regulated mutants compared to the wild-type. Using specific primers, RT-PCR analysis detected the presence of Psy-2 transcripts in the down-regulated mutants and wild-type throughout fruit development and ripening. These data were supported by the detection of phytoene synthase protein on western blots. Both GGPP formation and phytoene desaturation were elevated in these mutants. Therefore, it appears that despite the absence of carotenoids in ripe fruit, both the mutants have the enzymic capability to synthesize carotenoids in this tissue. Implications of the data with respect to the regulation of carotenoid formation and the channelling of prenyl lipid precursors in tomato (and its potential manipulation) are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit

Loading next page...
 
/lp/springer_journal/phytoene-synthase-2-enzyme-activity-in-tomato-does-not-contribute-to-AOVVK0kyVJ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006256302570
Publisher site
See Article on Publisher Site

Abstract

The characteristic yellow fruit phenotype of the r,r mutant and Psy-1 (phytoene synthase-1) antisense tomatoes is due to a mutated or down-regulated phytoene synthase protein, respectively, resulting in the virtual absence of carotenoids. Based on detailed carotenoid determinations Psy-1 appeared to barely contribute to the formation of carotenoids in chloroplast-containing tissues. Despite the virtual absence of carotenoids in ripe fruit the formation of phytoene in vitro was detected in fruit of both mutants. When [14C]isopentenyl pyrophosphate (IPP) was used as the substrate for phytoene synthase a reduction (e.g. r,r mutant, 5-fold) in the formation of phytoene was observed with an accumulation (e.g. r,r mutant, 2-fold) of the immediate precursor geranylgeranyl pyrophosphate (GGPP). Contrastingly, reduced phytoene synthase activity was not detected when [3H]GGPP was used as the substrate. The profile of phytoene formation during ripening was also different in the down-regulated mutants compared to the wild-type. Using specific primers, RT-PCR analysis detected the presence of Psy-2 transcripts in the down-regulated mutants and wild-type throughout fruit development and ripening. These data were supported by the detection of phytoene synthase protein on western blots. Both GGPP formation and phytoene desaturation were elevated in these mutants. Therefore, it appears that despite the absence of carotenoids in ripe fruit, both the mutants have the enzymic capability to synthesize carotenoids in this tissue. Implications of the data with respect to the regulation of carotenoid formation and the channelling of prenyl lipid precursors in tomato (and its potential manipulation) are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off