Physiological role of nickel and its toxic effects on higher plants

Physiological role of nickel and its toxic effects on higher plants The focus of the review is on the specific aspects of nickel effect on plants as compared to other heavy metals; their specificity is derived from different physical and chemical properties. The various facets of the physiological role of nickel and its toxic activity in higher plants, its intracellular partition and transport in plant tissues and organ are discussed. The putative mechanisms of nickel hyperaccumulation are considered in several representatives of angiosperm plant families. The existing evidence was used to outline the metabolic changes in plants affected by nickel. The comparison with other heavy metals is used to disclose the general mechanisms that disturb plant mineral nutrition, water regime, photosynthesis, and morphogenesis as well as the common cell responses aimed at detoxification of heavy metals. The numerous nonspecific effects of heavy metals depend on their direct and indirect action; in addition, some effects of nickel are specific. To illustrate, high Ni content in endoderm and pericycle cells blocks cell divisions in the pericycle and results in the inhibition of root branching. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physiological role of nickel and its toxic effects on higher plants

Loading next page...
 
/lp/springer_journal/physiological-role-of-nickel-and-its-toxic-effects-on-higher-plants-x464ypXJ4p
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706020178
Publisher site
See Article on Publisher Site

Abstract

The focus of the review is on the specific aspects of nickel effect on plants as compared to other heavy metals; their specificity is derived from different physical and chemical properties. The various facets of the physiological role of nickel and its toxic activity in higher plants, its intracellular partition and transport in plant tissues and organ are discussed. The putative mechanisms of nickel hyperaccumulation are considered in several representatives of angiosperm plant families. The existing evidence was used to outline the metabolic changes in plants affected by nickel. The comparison with other heavy metals is used to disclose the general mechanisms that disturb plant mineral nutrition, water regime, photosynthesis, and morphogenesis as well as the common cell responses aimed at detoxification of heavy metals. The numerous nonspecific effects of heavy metals depend on their direct and indirect action; in addition, some effects of nickel are specific. To illustrate, high Ni content in endoderm and pericycle cells blocks cell divisions in the pericycle and results in the inhibition of root branching.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 24, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off