Physiological role of anthocyanin accumulation in common hazel juvenile leaves

Physiological role of anthocyanin accumulation in common hazel juvenile leaves Common hazel (Corylus avellana L., Fusca rubra Dipp.) juvenile leaves from the periphery of the canopy and thus subjected to high fluxes of solar radiation are characterized by red coloration due to anthocyanin accumulation disappearing in mature leaves. To elucidate the physiological role of anthocyanin accumulation, the interrelations between anthocyanin content, a degree of attenuation by the pigments of the light reaching the photosynthetic apparatus (PSA), and PSA tolerance to photoinhibition in C. avellana juvenile leaves were studied. Absorption spectra were calculated taking into account the light losses due to reflection by the leaf. The analysis of the spectra showed that, in red common hazel leaves accumulating high amounts of anthocyanins in the vacuoles of the upper and lower epidermal cells, up to 95% of visible radiation entering the leaf blade was absorbed by these pigments. The rate of the linear electron transport (ETR) in the chloroplast electron transport chain (ETC) was closely correlated with the anthocyanin content (r 2 = 0.87). In red leaves, the saturation of ETR dependence on irradiance was observed at the higher values of PAR than in green leaves. In red juvenile leaves, this value was close to that in mature green leaves tolerant to high light. There were no differences between red and green leaves in the level of non-photochemical quenching, the content of violaxanthin cycle pigments, a degree of their de-epoxidation under natural illumination and at irradiation with high PAR fluxes. Basing on the data obtained, one may conclude that anthocyanins in C. avellana juvenile leaves serve PSA photoprotection, preventing injury of immature PSA with excessive fluxes of PAR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physiological role of anthocyanin accumulation in common hazel juvenile leaves

Loading next page...
1
 
/lp/springer_journal/physiological-role-of-anthocyanin-accumulation-in-common-hazel-o0z7ol4WdR
Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711040157
Publisher site
See Article on Publisher Site

Abstract

Common hazel (Corylus avellana L., Fusca rubra Dipp.) juvenile leaves from the periphery of the canopy and thus subjected to high fluxes of solar radiation are characterized by red coloration due to anthocyanin accumulation disappearing in mature leaves. To elucidate the physiological role of anthocyanin accumulation, the interrelations between anthocyanin content, a degree of attenuation by the pigments of the light reaching the photosynthetic apparatus (PSA), and PSA tolerance to photoinhibition in C. avellana juvenile leaves were studied. Absorption spectra were calculated taking into account the light losses due to reflection by the leaf. The analysis of the spectra showed that, in red common hazel leaves accumulating high amounts of anthocyanins in the vacuoles of the upper and lower epidermal cells, up to 95% of visible radiation entering the leaf blade was absorbed by these pigments. The rate of the linear electron transport (ETR) in the chloroplast electron transport chain (ETC) was closely correlated with the anthocyanin content (r 2 = 0.87). In red leaves, the saturation of ETR dependence on irradiance was observed at the higher values of PAR than in green leaves. In red juvenile leaves, this value was close to that in mature green leaves tolerant to high light. There were no differences between red and green leaves in the level of non-photochemical quenching, the content of violaxanthin cycle pigments, a degree of their de-epoxidation under natural illumination and at irradiation with high PAR fluxes. Basing on the data obtained, one may conclude that anthocyanins in C. avellana juvenile leaves serve PSA photoprotection, preventing injury of immature PSA with excessive fluxes of PAR.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 19, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off