Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to salt stress

Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to... Plant exposure to stress results in the decomposition of their cell membrane phospholipids, and therefore it can elevate the level of EA (ethanolamine) in the cell, and this elevated level of EA induces an alarm response that activates cellular resistance and tolerance mechanisms. In the present study, in vitro cultured tobacco plants (Nicotiana rustica L.) were pretreated with ethanolamine (EA) before salt treatment. After 3 weeks of salt treatment (200 mM NaCl), the plants pretreated with exogenous EA showed the elevated levels of SOD, CAT and APX activity compared with unpretreated plants. Furthermore, total antioxidant capacity, fresh and dry weight and the content of photosynthetic pigments were also increased. In contrast, H2O2 content decreased under similar conditions. According to the results of this study, it can be suggested that EA pretreatment increased salt tolerance of tobacco plants at least partly by stimulation of antioxidative responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to salt stress

Loading next page...
 
/lp/springer_journal/physiological-responses-of-tobacco-plants-nicotiana-rustica-pretreated-dB0DxuCbmn
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715020156
Publisher site
See Article on Publisher Site

Abstract

Plant exposure to stress results in the decomposition of their cell membrane phospholipids, and therefore it can elevate the level of EA (ethanolamine) in the cell, and this elevated level of EA induces an alarm response that activates cellular resistance and tolerance mechanisms. In the present study, in vitro cultured tobacco plants (Nicotiana rustica L.) were pretreated with ethanolamine (EA) before salt treatment. After 3 weeks of salt treatment (200 mM NaCl), the plants pretreated with exogenous EA showed the elevated levels of SOD, CAT and APX activity compared with unpretreated plants. Furthermore, total antioxidant capacity, fresh and dry weight and the content of photosynthetic pigments were also increased. In contrast, H2O2 content decreased under similar conditions. According to the results of this study, it can be suggested that EA pretreatment increased salt tolerance of tobacco plants at least partly by stimulation of antioxidative responses.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off