Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to salt stress

Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to... Plant exposure to stress results in the decomposition of their cell membrane phospholipids, and therefore it can elevate the level of EA (ethanolamine) in the cell, and this elevated level of EA induces an alarm response that activates cellular resistance and tolerance mechanisms. In the present study, in vitro cultured tobacco plants (Nicotiana rustica L.) were pretreated with ethanolamine (EA) before salt treatment. After 3 weeks of salt treatment (200 mM NaCl), the plants pretreated with exogenous EA showed the elevated levels of SOD, CAT and APX activity compared with unpretreated plants. Furthermore, total antioxidant capacity, fresh and dry weight and the content of photosynthetic pigments were also increased. In contrast, H2O2 content decreased under similar conditions. According to the results of this study, it can be suggested that EA pretreatment increased salt tolerance of tobacco plants at least partly by stimulation of antioxidative responses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physiological responses of tobacco plants (Nicotiana rustica) pretreated with ethanolamine to salt stress

Loading next page...
 
/lp/springer_journal/physiological-responses-of-tobacco-plants-nicotiana-rustica-pretreated-dB0DxuCbmn
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715020156
Publisher site
See Article on Publisher Site

Abstract

Plant exposure to stress results in the decomposition of their cell membrane phospholipids, and therefore it can elevate the level of EA (ethanolamine) in the cell, and this elevated level of EA induces an alarm response that activates cellular resistance and tolerance mechanisms. In the present study, in vitro cultured tobacco plants (Nicotiana rustica L.) were pretreated with ethanolamine (EA) before salt treatment. After 3 weeks of salt treatment (200 mM NaCl), the plants pretreated with exogenous EA showed the elevated levels of SOD, CAT and APX activity compared with unpretreated plants. Furthermore, total antioxidant capacity, fresh and dry weight and the content of photosynthetic pigments were also increased. In contrast, H2O2 content decreased under similar conditions. According to the results of this study, it can be suggested that EA pretreatment increased salt tolerance of tobacco plants at least partly by stimulation of antioxidative responses.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off