Physiological Functions and Metabolism of Endogenous Ethanol and Acetaldehyde in the Reindeer

Physiological Functions and Metabolism of Endogenous Ethanol and Acetaldehyde in the Reindeer This study addresses for the first time the seasonal (winter–summer) dynamics of endogenous ethanol (EE) and acetaldehyde (EA) blood levels as well as of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities and catalytic properties in the liver of the reindeer. EE blood level was 1.89 ± 0.11 mM in summer and 1.41 ± 0.10 mM (i.e. 1.34 times lower) in winter (p< 0.05). Seasonal dynamics of EA blood levels was opposite: 3.06 ± 0.28 μM in summer and 12.62 ± 0.76 μM (i.e. 4.12 times higher) in winter (p< 0.05). In winter, there was a decrease in activities of ADHII in the acetaldehyde reduction reaction (4.0 times) and ALDH (3.3 times) in the liver (p< 0.05). This led to an increased winter blood level of EA in cold-adapted animals. Our results suggest that EE and EA, as interrelated metabolites, make up one of the systems that regulate the metabolic rate and eventually reduce the intensity of energy metabolism in the reindeer. This consi derably extends the possibilities for northern species to exist under extreme environmental conditions of cold regions. Apparently, a major ph ysiological function of the system that includes EE, EA and relevant enzymes is to increase cold tolerance of an organism due to the inhibitory effect of EA on mitochondrial terminal oxidation which reduces the intensity of aerobic processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Evolutionary Biochemistry and Physiology Springer Journals

Physiological Functions and Metabolism of Endogenous Ethanol and Acetaldehyde in the Reindeer

Loading next page...
 
/lp/springer_journal/physiological-functions-and-metabolism-of-endogenous-ethanol-and-R9ytSwWGnj
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Evolutionary Biology; Biochemistry, general; Animal Physiology
ISSN
0022-0930
eISSN
1608-3202
D.O.I.
10.1134/S0022093018020023
Publisher site
See Article on Publisher Site

Abstract

This study addresses for the first time the seasonal (winter–summer) dynamics of endogenous ethanol (EE) and acetaldehyde (EA) blood levels as well as of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities and catalytic properties in the liver of the reindeer. EE blood level was 1.89 ± 0.11 mM in summer and 1.41 ± 0.10 mM (i.e. 1.34 times lower) in winter (p< 0.05). Seasonal dynamics of EA blood levels was opposite: 3.06 ± 0.28 μM in summer and 12.62 ± 0.76 μM (i.e. 4.12 times higher) in winter (p< 0.05). In winter, there was a decrease in activities of ADHII in the acetaldehyde reduction reaction (4.0 times) and ALDH (3.3 times) in the liver (p< 0.05). This led to an increased winter blood level of EA in cold-adapted animals. Our results suggest that EE and EA, as interrelated metabolites, make up one of the systems that regulate the metabolic rate and eventually reduce the intensity of energy metabolism in the reindeer. This consi derably extends the possibilities for northern species to exist under extreme environmental conditions of cold regions. Apparently, a major ph ysiological function of the system that includes EE, EA and relevant enzymes is to increase cold tolerance of an organism due to the inhibitory effect of EA on mitochondrial terminal oxidation which reduces the intensity of aerobic processes.

Journal

Journal of Evolutionary Biochemistry and PhysiologySpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off