Physiological changes in them in post-stress emerging Ctenanthe setosa plants under drought conditions

Physiological changes in them in post-stress emerging Ctenanthe setosa plants under drought... The capability of Ctenanthe setosa (Rosc.) Eichler (Marantaceae), pre-exposed to severe drought stress, of adaptation to a new drought conditions was investigated. C. setosa unstressed plants were exposed to drought period of 70 days. These plants were named as primary-stress plants (PS). They were trimmed, and new plants were produced from their rhizomes. New growing plants were named as post-stress emerging (PSE) plants. It was observed that leaf area and petiole length of PSE plants were reduced, as compared to unstressed plants. When PSE plants were exposed to a second drought-stress cycle, it was determined that the degree of their leaf rolling was higher but their relative water content (RWC) was less than these parameters of PS plants during drought period. However, at the 81% rolling degree, RWC in PSE plants was higher than in PS plants. Consequently, it can be said that the PSE plant were more resistant to a new drought stress than unstressed and PS plants. In the leaves of PSE plants, which were exposed to a second drought-stress period, the content of soluble protein decreased in the early period of drought, but increased in the later periods. Also, the content of reducing sugar in PSE plants gradually decreased during the stress period. Proline content increased markedly during drought period, whereas peroxidase activity increased up to the 60th day and then decreased. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physiological changes in them in post-stress emerging Ctenanthe setosa plants under drought conditions

Loading next page...
 
/lp/springer_journal/physiological-changes-in-them-in-post-stress-emerging-ctenanthe-setosa-GeGvssshzQ
Publisher
Springer Journals
Copyright
Copyright © 2008 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708010056
Publisher site
See Article on Publisher Site

Abstract

The capability of Ctenanthe setosa (Rosc.) Eichler (Marantaceae), pre-exposed to severe drought stress, of adaptation to a new drought conditions was investigated. C. setosa unstressed plants were exposed to drought period of 70 days. These plants were named as primary-stress plants (PS). They were trimmed, and new plants were produced from their rhizomes. New growing plants were named as post-stress emerging (PSE) plants. It was observed that leaf area and petiole length of PSE plants were reduced, as compared to unstressed plants. When PSE plants were exposed to a second drought-stress cycle, it was determined that the degree of their leaf rolling was higher but their relative water content (RWC) was less than these parameters of PS plants during drought period. However, at the 81% rolling degree, RWC in PSE plants was higher than in PS plants. Consequently, it can be said that the PSE plant were more resistant to a new drought stress than unstressed and PS plants. In the leaves of PSE plants, which were exposed to a second drought-stress period, the content of soluble protein decreased in the early period of drought, but increased in the later periods. Also, the content of reducing sugar in PSE plants gradually decreased during the stress period. Proline content increased markedly during drought period, whereas peroxidase activity increased up to the 60th day and then decreased.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 18, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off