Physiological Aspects of Adaptation of the Marine Microalga Tetraselmis (Platymonas) viridis to Various Medium Salinity

Physiological Aspects of Adaptation of the Marine Microalga Tetraselmis (Platymonas) viridis to... We studied the capability of the marine microalga Tetraselmis (Platymonas) viridis to adapt to low and high medium salinity. The normal NaCl concentration for growth of this alga is 0.5 M. It was shown that T. viridis cells could actively grow and maintain osmoregulation and cytoplasmic ion homeostasis in the wide range of external salt concentrations, from 0.01 to 1.2 M NaCl. Using the plasma membrane vesicles isolated from T. viridis cells grown at various NaCl concentrations (0.01, 0.05, 0.5, 0.9, and 1.2 M), we studied the formation of the phosphorylated intermediate of Na+-ATPase, the enzyme responsible for Na+ export from the cells with a mol wt of ca. 100 kD. Na+-ATPase was shown to function in the plasma membrane even in the cells growing at an extremely low NaCl concentration (0.01 M). When alga was grown in high-salt media, the synthesis of several proteins with molecular weights close to 100 kD was induced. The data obtained argue for the hypothesis, which was put forward earlier, that a novel Na+-ATPase isoform is induced by T. viridis growing at high NaCl concentrations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Physiological Aspects of Adaptation of the Marine Microalga Tetraselmis (Platymonas) viridis to Various Medium Salinity

Loading next page...
 
/lp/springer_journal/physiological-aspects-of-adaptation-of-the-marine-microalga-FXYOMglQAW
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000019210.59579.6b
Publisher site
See Article on Publisher Site

Abstract

We studied the capability of the marine microalga Tetraselmis (Platymonas) viridis to adapt to low and high medium salinity. The normal NaCl concentration for growth of this alga is 0.5 M. It was shown that T. viridis cells could actively grow and maintain osmoregulation and cytoplasmic ion homeostasis in the wide range of external salt concentrations, from 0.01 to 1.2 M NaCl. Using the plasma membrane vesicles isolated from T. viridis cells grown at various NaCl concentrations (0.01, 0.05, 0.5, 0.9, and 1.2 M), we studied the formation of the phosphorylated intermediate of Na+-ATPase, the enzyme responsible for Na+ export from the cells with a mol wt of ca. 100 kD. Na+-ATPase was shown to function in the plasma membrane even in the cells growing at an extremely low NaCl concentration (0.01 M). When alga was grown in high-salt media, the synthesis of several proteins with molecular weights close to 100 kD was induced. The data obtained argue for the hypothesis, which was put forward earlier, that a novel Na+-ATPase isoform is induced by T. viridis growing at high NaCl concentrations.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off